精英家教网 > 高中数学 > 题目详情
15.设全集为R,集合A={x|x2+ax-12=0},集合B={x|x2+bx=0},若A∩∁UB={2},求实数a,b的值.

分析 根据集合A={x|x2+ax-12=0},集合B={x|x2+bx=0},若A∩∁UB={2},则2∈A,方程x2+ax-12=0的另一根∈B,代入可得实数a,b的值.

解答 解:∵集合A={x|x2+ax-12=0},集合B={x|x2+bx=0},
若A∩∁UB={2},
则2∈A,
即4+2a-12=0,解得:a=4,
此时A={2,-6},
故-6∈B,
即36-6b=0,解得:b=6.

点评 本题考查的知识点是集合的交集,并集,补集运算,正确理解A∩∁UB={2}的含义是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设函数f(x+2)=x2-2x,则f(x)的表达式为f(x)=x2-6x+8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列选项所给集合中哪组集合相等(  )
A.M={(0,1)},N=(0,1)B.M={x=1,y=0},N={(1,0)}
C.M={x|x2-x=0},N={x|x=$\frac{1+(-1)^{n}}{2}$,n∈Z}D.M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知平面向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),则两向量的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2+(p-1)x+p-1=0},B={x|y=$\frac{2{x}^{2}-3}{\sqrt{x}}$},若A∩B=∅,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,根据函数y=f(x)(x∈R)的图象,写出函数y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.满足1+log0.5x>0的x的集合是{x|0<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,已知acosB=bcosA=ccosC,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式组$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}$所表示的平面区域被直线y=kx+$\frac{4}{3}$分为面积比为1:2的两部分,则k的一个值为(  )
A.$\frac{7}{3}$B.$\frac{4}{3}$C.1D.$\frac{3}{7}$

查看答案和解析>>

同步练习册答案