精英家教网 > 高中数学 > 题目详情
已知△ABC中,三个内角A、B、C对应的三边长分别为a、b、c,且有4bcosAcosB=9asin2B.
(Ⅰ)求tanA•tanB的值;
(Ⅱ)求tanC的最大值,并判断此时△ABC的形状.
分析:(Ⅰ)利用4bcosAcosB=9asin2B,直接求tanA•tanB的值;
(Ⅱ)利用(Ⅰ)的结果,通过tanC=tan[π-(A+B)],诱导公式以及两角和的正切函数,求出tanC的最大值,然后判断此时△ABC的形状.
解答:解:(Ⅰ)∵4bcosAcosB=9asin2B
∴4cosAcosB=9sinAsinB…(3分)
显然cosAcosB≠0
tanA•tanB=
4
9
…(6分)
(Ⅱ)由(Ⅰ)知,tanA•tanB=
4
9
>0
,故有tanA>0,tanB>0
tanA+tanB≥2
tanAtanB
=
4
3
…(8分)
tanC=tan[π-(A+B)]=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
9
5
(tanA+tanB)

≤-
9
5
×2
tanA•tanB
=-
12
5
…(10分)
当且仅当tanA=tanB,即A=B时,tanC取得最大值-
12
5

此时△ABC为等腰三角形.                  …(12分)
点评:本题考查三角函数的化简求值,诱导公式与两角和的正切函数的应用,基本不等式的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•淄博二模)已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,则tanC等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,三个内角A、B、C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,求tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,求tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,求tanC的值.

查看答案和解析>>

同步练习册答案