【题目】为了了解某市开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区抽取5个工厂进行调查.已知这三个区分别有9,18,18个工厂.
(1)求从A、B、C三个区中分别抽取的工厂的个数;
(2)若从抽得的5个工厂中随机地抽取2个进行调查结果的比较,计算这2个工厂中至少有一个来自C区的概率.
【答案】(1)A区:1个,B区:2个,C区:2个(2)
【解析】
(1)先计算区中工厂数的比例,再利用分层抽样方法,根据比例计算各区应抽取的工厂数;(2)利用列举法,先将各区所抽取的工厂用字母表达,分别列举出从抽取的5个工厂中随机抽取2个的事件和至少有1个来自区的事件,再利用古典概型概率公式求解即可.
(1)工厂总数为9+18+18=45,
样本容量与总体中的个体数比为,
所以从A,B,C三个区中应分别抽取的工厂个数为:
A区:1个B区:2个C区:2个
(2)抽得的5个工厂分别记作A,B1,B2,C1,C2
列举列举出从抽取的5个工厂中随机抽取2个的事件:(A,B1)(A1,B2)(A,C1)(A,C2)(B1,B2)(B1,C1)(B1,C2)(B2,C1)(B2,C2)(C1,C2)共10个;
至少有1个来自区的事件(A,C1)(A,C2)(B1,C1)(B1,C2)(B2,C1)(B2,C2)(C1,C2)共7个,从抽得的5个工厂中随机地抽取2个进行调查结果的比较,这2个工厂中至少有一个来自C区的概率.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求四面体N﹣BCM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.
(Ⅰ)若,求证:平面PQB平面PAD;
(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在研究函数f(x)=(x∈R)时,分别给出下面几个结论:
①等式f(-x)=-f(x)在x∈R时恒成立;
②函数f(x)的值域为(-1,1);
③若x1≠x2,则一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三个根.
其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述:
①化简的结果为﹣.
②函数y=在(﹣∞,﹣1)和(﹣1,+∞)上是减函数;
③函数y=log3x+x2﹣2在定义域内只有一个零点;
④定义域内任意两个变量x1,x2,都有,则f(x)在定义域内是增函数.
其中正确的结论序号是_____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差数列,求数列{an}的通项公式;
(2)设双曲线x2﹣ =1的离心率为en , 且e2=2,求e12+e22+…+en2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱ABC-A1B1C1,底面△ABC的边长AB=1,侧棱长为,P是A1B1的中点,E、F、G分别是AC,BC,PC的中点.
(1)求FG与BB1所成角的大小;
(2)求证:平面EFG∥平面ABB1A1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com