精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinωx•cos(ωx+
π
6
)+
1
2
(ω>0)的最小正周期为4π(1)求正实数ω的值;(2)在△ABC中,内角A、B、C的对边分别为a、b、c,且满足2bcosA=acosC+ccosA,求f(A)的值.
分析:(1)首先用两个角的和的正弦公式写出展开后的结果,和2sinωx相乘,利用二倍角公式降幂,最后利用辅角公式写出结果y=sin(2ωx+
π
6
),根据周期求出ω的值.
(2)由2bcosA=acosC+ccosA及正弦定理可得角的三角函数值之间的关系,根据三角形内角和进行角的代换,根据函数值和角的范围写出解答值,代入函数求出结果.
解答:解:(1)∵f(x)=2sinωx(cosωx•cos
π
6
-sinωx•sin
π
6
)+
1
2

=
3
sinωxcosωx-sin2ωx+
1
2

=
3
2
sin2ωx-
1
2
(1-cos2ωx)+
1
2
=sin(2ωx+
π
6
).
又f(x)的最小正周期T=
=4π,则ω=
1
4

(2)由2bcosA=acosC+ccosA及正弦定理可得2sinBcosA=sinAcosC+sinCcosA=sin(A+C).
又A+B+C=π,则2sinBcosA=sinB.
而sinB≠0,则cosA=
1
2
.又A∈(0,π),故A=
π
3

由(1)f(x)=sin(
x
2
+
π
6
),从而f(A)=sin(
π
3
×
1
2
+
π
6
)=sin
π
3
=
3
2
点评:本题考查三角函数的恒等变形和性质,解题的关键是把三角函数进行正确的变形,得到可以用来求解函数的性质的形式,这是常见的一种高考卷中的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案