精英家教网 > 高中数学 > 题目详情
如图,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是___________.

试题分析:过B作BE⊥BP,使E、A在BP的两侧,且BE=PB=4。显然有:PE=.
∵ABCD是正方形,∴∠ABC=90°、AB=BC。∴∠PBE+∠PBA=∠ABC+∠PBA=90°+∠PBA,∴∠ABE=∠CBP。∵BE=BP、AB=BC、∠ABE=∠CBP,∴△ABE≌△CBP,∴AE=PC。考查P、A、E三点,显然有:AEPA+PE=3+。∴当点P落在线段AE上时,AE有最大值为,∴PC的最长距离为
点评:本题的关键是能巧妙利用三角形全等的知识,构造全等三角形,把求PC的长转化成
求AE的长,属难题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,若G,E,F分别是ABC的边AB,BC,CA的中点,O是△ABC的重心,则(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,是棱的中点.

(Ⅰ)证明:平面
(Ⅱ)证明: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:
ACBD;     ②△ACD是等边三角形;
AB与平面BCD成60°的角;   ④ABCD所成的角是60°.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面,则下列结论成立的是(  )
A.若,则B.若,则
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为圆的直径,点在圆上,矩形所在的平面和圆所在的平面互相垂直,且.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥P-ABCD的所有棱长都相等,则侧棱与底面所成的角为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体的棱线长为1,线段上有两个动点E,F,且,则三棱锥的体积为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,,且E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为

(Ⅰ)求证:平面BDE
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

同步练习册答案