精英家教网 > 高中数学 > 题目详情

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸xmm)之间近似满足关系式bc为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:

尺寸xmm

38

48

58

68

78

88

质量y (g)

16.8

18.8

20.7

22.4

24

25.5

质量与尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

Ⅰ)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望;

Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:

75.3

24.6

18.3

101.4

ⅰ)根据所给统计量,求y关于x的回归方程

ⅱ)已知优等品的收益(单位:千元)与的关系为,则当优等品的尺寸x为何值时,收益的预报值最大?(精确到0.1)

附:对于样本 ,其回归直线的斜率和截距的最小二乘估计公式分别为:.

【答案】(1)见解析(2),x=72.3

【解析】

由题意,首先确定的取值,然后求解相应的分布列和数学期望即可

结合题中所给的数据计算回归方程即可

结合计算求得的回归方程得到收益函数,讨论函数的最值即可求得最终结果

(1)解:由已知,优等品的质量与尺寸的比在区间内,即

则随机抽取的6件合格产品中,有3件为优等品,3件为非优等品

现从抽取的6件合格产品中再任选3件,则取到优等品的件数

的分布列为

(2)解:对)两边取自然对数得

,得,且

ⅰ)根据所给统计量及最小二乘估计公式有

-

,故

所求y关于x的回归方程为

ⅱ)由(ⅰ)可知,,则

由优等品质量与尺寸的比,即

时,取最大值 -

即优等品的尺寸mm),收益的预报值最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法错误的是

A. 相关关系是一种非确定性关系

B. 线性回归方程对应的直线,至少经过其样本数据点中的一个点

C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D. 在回归分析中,的模型比的模型拟合的效果好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,人们对食品安全越来越重视,有机蔬菜的需求也越来越大,国家也制定出台了一系列支持有机肥产业发展的优惠政策,鼓励和引导农民增施有机肥,藏粮于地,藏粮于技.根据某种植基地对某种有机蔬菜产量与有机肥用量的统计,每个有机蔬菜大棚产量的增加量(百斤)与使用有机肥料(千克)之间对应数据如下表:

使用有机肥料(千克)

3

4

5

6

7

8

9

10

产量增加量 (百斤)

2.1

2.9

3.5

4.2

4.8

5.6

6.2

6.7

1)根据表中的数据,试建立关于的线性回归方程(精确到);

2 若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客.已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完).该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:

每天16点前的

销售量(单位:千克)

100

110

120

130

140

150

160

频数

10

20

16

16

14

14

10

若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?

附:回归直线方程中的斜率和截距的最小二乘估计公式分别为:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某人做某件事,成功的概率只有0.1.用计算器计算,如果他尝试10次,而且每次是否成功都相互独立,则他至少有一次成功的概率为多少(精确到0.01)?如果他尝试20次呢?如果要保证至少成功一次的概率不小于90%,则他至少要尝试多少次?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个棱长为的正方体的表面涂上颜色,将其适当分割成棱长为的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体底面是梯形四边形是正方形

(1)求证平面平面

(2)为线段上一点,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取2人,这2人都“认为作业量大”的概率为.

认为作业量大

认为作业量不大

合计

男生

18

女生

17

合计

50

1)请完成上面的列联表;

2)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )

A. 乙有四场比赛获得第三名

B. 每场比赛第一名得分

C. 甲可能有一场比赛获得第二名

D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为,为坐标原点.

(Ⅰ)求的轨迹方程;

(Ⅱ)当不重合)时,求的方程及的面积.

查看答案和解析>>

同步练习册答案