【题目】在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在直线l上,若圆C上存在点M,使|MA|=2|MO|,则点M的轨迹方程是________,圆心C的横坐标的取值范围是________.
【答案】 x2+(y+1)2=4
【解析】设点M(x,y),因为|MA|=2|MO|,所以,整理得x2+(y+1)2=4,所以点M的轨迹是以P(0,-1)为圆心,半径为2的圆.设圆C的圆心C(t,2t-4).由题意可得圆C与圆P至少有一个公共点,所以1≤≤3,解得t∈.所以圆心C的横坐标的取值范围是.故填x2+(y+1)2=4, .
点睛: 求轨迹方程的常用方法一般分为两大类,一类是已知所求曲线的类型,求曲线方程——先根据条件设出所求曲线的方程,再由条件确定其待定系数——待定系数法;另一类是不知曲线类型常用的方法有:(1)直接法;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入法(相关点法);(4)参数法.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)写出曲线的普通方程和直线的直角坐标方程;
(2)设点,直线与曲线相交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若AB,求实数m的取值范围;
(3)若A∩B=,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为,,,,,).
(1)求选取的市民年龄在内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合与的关系,请用相关系数加以说明;(系数精确到0.001)
(2)建立关于的回归方程(系数精确到0.01);如果该公司计划在9月份实现产品销量超6万件,预测至少需投入促销费用多少万元(结果精确到0.01).
参考数据: , , , , ,其中, 分别为第个月的促销费用和产品销量, .
参考公式:(1)样本的相关系数
(2)对于一组数据, , , ,其回归方程的斜率和截距的最小二乘估计分别为, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足, ,其中.
(1)设,求证:数列是等差数列,并求出的通项公式;
(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com