精英家教网 > 高中数学 > 题目详情

【题目】定义域为的函数满足:,且对于任意实数恒有,当时,.

(1)求的值,并证明当时,

(2)判断函数上的单调性并加以证明;

(3)若不等式对任意恒成立,求实数的取值范围.

【答案】(1)见解析;(2)见解析;(3)

【解析】分析:(1)赋值:令,可得,令,设,则,因为,所以.(2)单调性证明根据定义证明即可:设,则,由(1)知,所以,即,(3)结合(2)的单调性可得只需解,对任意恒成立即可.

详解:

(1)由已知,对于任意实数恒有

,可得

因为当时,,所以,故.

,设,则

因为,所以.

(2)设,则

由(1)知,所以,即

所以函数上为减函数.

(3)由

所以

上式等价于对任意恒成立,

因为,所以

所以对任意恒成立,

时取等),

所以

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 的顶点在原点 ,对称轴是 轴,且过点 .
(Ⅰ)求抛物线 的方程;
(Ⅱ)已知斜率为 的直线 轴于点 ,且与曲线 相切于点 ,点 在曲线 上,且直线 轴, 关于点 的对称点为 ,判断点 是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点在单位圆上的 中,角 的对边分别为 ,且 .
(1)求 的值;
(2)若 ,求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:实数x满足 ,其中 ;和命题q:实数x满足 .
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若-p是-q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量t万件满足t=5- (其中0 x a,a为正常数),现假定生产量与销售量相等,已知生产该产品t万件还需投入成本(10+2t)万元(不含促销费用),产品的销售价格定为5+ 万元/万件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),图中圆弧所在圆的圆心为点C,半径为 ,且点P在图中阴影部分(包括边界)运动.若 ,其中 ,则 的取值范围是( )

A.[2,3+ ]
B.[2,3+ ]
C.[3- , 3+ ]
D.[3- , 3+ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)若对 ,f(x) 恒成立,求a的取值范围;
(2)已知常数a R,解关于x的不等式f(x) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:
①“四边相等的四边形是正方形”的否命题;
②“梯形不是平行四边形”的逆否命题;
③“若 ,则 ”的逆命题.
其中真命题是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的角ABC所对的边分别为abc,设向量=(ab),=(sin B,sin A), =(b-2,a-2).

(1),求证:ABC为等腰三角形;

(2),边长c=2,∠C,求ABC的面积.

查看答案和解析>>

同步练习册答案