精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=ax-xlna+alnx-1(a>0,且a≠1),给出下列结论:
①函数f(x)为定义域上的增函数;
②当0<a<1时,函数f(x)在区间(a,1)上有且只有一个零点;
③对任意x∈[1,e],都有f(x)≥$\frac{1}{e}$恒成立的充要条件为a∈[$\frac{1}{e}$,1);
④设g(x)=f(x)-ax,存在唯一实数a,使得对任意x>0,都有g(x)+1≤0.
其中正确结论的序号为①②④.(写出所有正确结论的序号)

分析 ①求出函数的导数,通过讨论a的范围,求出函数的单调区间判断①即可;
②根据函数的单调性得到f(1)=a-lna-1,(0<a<1),令g(a)=a-lna-1,根据函数的单调性判断即可;
③根据函数的单调性不妨令a=$\frac{2}{e}$,计算f(1),不合题意;
④问题转化为$\frac{lna}{a}$≥$\frac{lnx}{x}$,令h(x)=$\frac{lnx}{x}$,根据函数的单调性求出a的值即可判断.

解答 解:①f′(x)=lna(ax-1)+$\frac{a}{x}$,
0<a<1时,ax-1<0,lna<0,$\frac{a}{x}$>0,
∴f′(x)>0,
a>1时,ax-1>0,lna>0,$\frac{a}{x}$>0,
∴f′(x)>0,
∴函数f(x)为定义域上的增函数,
故①正确;
②由①得,f(x)在区间(a,1)递增,
0<a<1,0<aa<1,
∴f(a)=aa-1<0,
而f(1)=a-lna-1,(0<a<1),
令g(a)=a-lna-1,(0<a<1),
g′(a)=$\frac{a-1}{a}$<0,g(a)递减,
g(a)>g(1)=0,
∴f(1)=g(a)>0,
∴当0<a<1时,函数f(x)在区间(a,1)上有且只有一个零点,
故②正确;
③对任意x∈[1,e],由①f(x)在[1,e]递增,
不妨令a=$\frac{2}{e}$,得f(1)=$\frac{2}{e}$-ln$\frac{2}{e}$-1=$\frac{2}{e}$-ln2<$\frac{1}{e}$,
故③错误;
④若g(x)+1≤0,
即ax-xlna+alnx-1-ax+1≤0,
即$\frac{lna}{a}$≥$\frac{lnx}{x}$,
令h(x)=$\frac{lnx}{x}$,(x>0),
∴h′(x)=$\frac{1-lnx}{{x}^{2}}$,
令h′(x)>0,解得:0<x<e,令h′(x)<0,解得:x>e,
∴h(x)在(0,e)递增,在(e,+∞)递减,
∴h(x)最大值=h(e),此时a=e,
故④正确,
故答案为:①②④.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及特殊值法的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.平面A1B1C1∥平面ABC,A1A⊥平面ABC,A1A∥B1B∥C1C,AB=BC=AC=AA1=4,求BC1与平面ABB1A1所成角的大小.(要求用几何和向量两种方法计算,并有规范的计算过程)
几何方法:arcsin$\frac{\sqrt{6}}{4}$
向量方法:arcsin$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合M={x|x2+3x=0},N={x|x2+2x-3=0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=(2-a)lnx+$\frac{2}{x}$+ax.
(1)当a=0时,求函数f(x)的极值;
(2)当a<0时,试求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.平面内给定三个向量$\overrightarrow a$=(3,2),$\overrightarrow b$=(-1,2),$\overrightarrow c$=(4,1)
(Ⅰ)求满足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的实数m,n;
(Ⅱ)若($\overrightarrow a+k\overrightarrow c)$∥(2$\overrightarrow b-\overrightarrow a)$,求实数k;
(Ⅲ)若$\overrightarrow d$满足($\overrightarrow d$-$\overrightarrow c$)⊥($\overrightarrow a$+$\overrightarrow b$),且|$\overrightarrow d$|=2$\sqrt{2}$,求$\overrightarrow d$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=f(x)的导函数y=f′(x)的图象如图所示,则原函数y=f(x)的极大值点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是首项为1,公差不为0的等差数列,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Sn是数列{bn}的前n项和,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,在x=0处的切线与直线3x+y=0平行.
(1)求f(x)的解析式;
(2)已知点A(2,m),求过点A的曲线y=f(x)的切线条数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.与圆(x+2)2+y2=1及圆(x-2)2+y2=4都外切的圆的圆心的轨迹方程为$\frac{{x}^{2}}{\frac{1}{4}}-\frac{{y}^{2}}{\frac{15}{4}}$=1(x<0).

查看答案和解析>>

同步练习册答案