精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}满足a35a42a23,又等比数列{bn}中,b13且公比q3.

1)求数列{an}{bn}的通项公式;

2)若cnan+bn,求数列{cn}的前n项和Sn.

【答案】1an2n1bn3n;(2n2

【解析】

1)根据题意,利用基本量列出方程即可求得的通项公式;利用公式直接写出的通项公式即可;

2)由通项公式的形式,利用分组求和法求得数列的前项和.

1)设等差数列{an}的公差为d

则由题意得

解得

所以,an1+2n1)=2n1

因为{bn}是以b13且公比q3的等比数列,

所以bn3n

综上所述:an2n1bn3n.

2)由(1)得cnan+bn=(2n1+3n

Sn1+3+5++2n1+3+32+33++3n

=n2.

故数列{cn}的前n项和Sn n2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC60°,点EF分别是BCPC的中点,用向量方法解决以下问题:

1)求异面直线AEPD所成角的大小;

2)若ABAP,求二面角EAFC的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为立方米,且分上下两层,其中上层是半径为(单位:米)的半球体,下层是半径为米,高为米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为千元.

参考公式:球的体积,球的表面积,其中为球的半径.

1)求关于的函数解析式,并指出该函数的定义域;

2)当半径为何值时,每座帐篷的建造费用最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y2xm与抛物线Cy22pxp0)交于点AB

1mp|AB|5,求抛物线C的方程;

2)若m4p,求证:OAOBO为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值.

(1)求的取值范围;

(2)若处取得极值,且当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,四边形是边长为6的正方形,直线与平面所成的角的正切值为3,点为棱上的动点,且.

1)当为何值时,平面?

2)当时,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,,平面平面,且.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的大小;

(Ⅲ)已知点在棱上,且异面直线所成角的余弦值为,求线段的长.

查看答案和解析>>

同步练习册答案