精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥的底面是直角梯形,的中点,.

(1)证明:平面平面

(2)若与平面所成的角为,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】分析:(1)在直角梯形中,由已知得是等边三角形,这样结合可得,再有,因此有平面,从而可证面面垂直;

(2)只要作于点,则可得平面,从而得中点,,计算得,以为坐标轴建立空间直角坐标系,写出各点坐标,求出平面和平面的法向量,由法向量的夹角的余弦值得二面角的余弦值.

详解:(1)证明:由是直角梯形,

可得

从而是等边三角形,平分

的中点,,∴

又∵,∴平面

平面,∴平面平面

(2)法一:作,连,

∵平面平面,平面平面

与平面平面

与平面所成的角,

又∵,∴中点,

轴建立空间直角坐标系,

设平面的一个法向量

又平面的一个法向量为

设二面角,则

所求二面角的余弦值是.

解法二:作于点,连

∵平面平面,平面平面

平面

与平面所成的角,

又∵,∴中点,

于点,连,则平面,则

为所求二面角的平面角

,得,∴,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若椭圆与椭圆满足,则称这两个椭圆相似,叫相似比.若椭圆与椭圆相似且过点.

(I)求椭圆的标准方程;

(II)过点作斜率不为零的直线与椭圆交于不同两点为椭圆的右焦点,直线分别交椭圆于点,设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据我市房地产数据显示,今年我市前5个月新建住宅销售均价逐月上升,为抑制房价过快上涨,政府从6月份开始推出限价房等宏观调控措施,6月份开始房价得到很好的抑制,房价回落.今年前10个月的房价均价如表:

月份x

1

2

3

4

5

6

7

8

9

10

均价y(万元/平方米)

0.83

0.95

1.00

1.05

1.17

1.15

1.10

1.06

0.98

0.94

地产数据研究发现,从1月份至5月份的各月均价y(万元/平方米)与x之间具有正线性相关关系,从6月份至10月份的各月均价y(万元/平方米)与x之间具有负线性相关关系.

1)若政府不调控,根据前5个月的数据,求y关于x的回归直线方程,并预测12月份的房地产均价.(精确到0.01

2)政府调控后,从6月份至10月份的数据可得到yx的回归直线方程为:.由此预测政府调控后12月份的房地产均价.说明政府调控的必要性.(精确到0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2xa|+|xa+1|

1)当a4时,求解不等式fx≥8

2)已知关于x的不等式fxR上恒成立,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,是等边三角形,,点 的中点,连接

1)证明:平面平面;

2)若,且二面角,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

1)求实数的取值范围;

2)设的两个零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191216日,公安部联合阿里巴巴推出的“钱盾反诈机器人”正式上线,当普通民众接到电信网络诈骗电话,公安部钱盾反诈预警系统预警到这一信息后,钱盾反诈机器人即自动拨打潜在受害人的电话予以提醒,来电信息显示为“公安反诈专号”.某法制自媒体通过自媒体调查民众对这一信息的了解程度,从5000多参与调查者中随机抽取200个样本进行统计,得到如下数据:男性不了解这一信息的有50人,了解这一信息的有80人,女性了解这一信息的有40.

1)完成下列列联表,问:能否在犯错误的概率不超过0.01的前提下,认为200个参与调查者是否了解这一信息与性别有关?

了解

不了解

合计

男性

女性

合计

2)该自媒体对200个样本中了解这一信息的调查者按照性别分组,用分层抽样的方法抽取6人,再从这6人中随机抽取3人给予一等奖,另外3人给予二等奖,求一等奖与二等奖获得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为.

(1)求曲线的普通方程,曲线的参数方程;

(2)若分别为曲线上的动点,求的最小值,并求取得最小值时,点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的极值;

2)设,对任意都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案