精英家教网 > 高中数学 > 题目详情

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数数学公式在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

解:(1)对于定义域D内的任意一个自变量x0,都有函数值g(x0)∈(-1,1)∉D1
故函数g(x)=2x-1在D1上不封闭;
(2)若存在,则
∵定义域D2=(1,5],∴∈(1,5],
∴-10≤a≤-2
(3)①根据题意,只需当x≠-2时,方程f(x)=x有解,方程x2-3x+a=0有不等于2的解.
将x=-2代入方程,得a=-10,由此可得a的取值范围是(-∞,-10)∪(-10,+∞).
②根据题意,=a在R中无解,
亦即当x≠-2时,方程(5-a)x=3a无实数解.
∴a=5即为所求a的值.
分析:(1)对于定义域D内的任意一个自变量x0,都有函数值g(x0)∈(-1,1)∉D1,故函数g(x)=2x-1在D1上不封闭;
(2)若存在,则,根据定义域D2=(1,5],可知∈(1,5],故可求;
(3)①根据题意,只需当x≠-2时,方程f(x)=x有解,方程x2-3x+a=0有不等于2的解.将x=2代入方程,得x=2,由此可得a的取值范围.
②根据题意,f(x)=a在R中无解,亦即当x≠-2时,方程(5-a)x=3a无实数解.由此能够导出a.
点评:本题以新定义函数为载体,考查新定义,关键是对新定义的理解,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数f(x)=
5x-ax+2
在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断下列函数中哪些在D1上封闭(写出推理过程):f1(x)=2x-1,f2(x)=-
1
2
x2
-
1
2
x
+1,f3(x)=2x-1;
(2)若定义域D2=(1,2),是否存在实数a,使得函数f(x)=
5x-a
x+2
在D2上封闭?若存在,求出a的值,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出函数封闭的定义:若对于定义域D内的任一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断下列函数中哪些在D1上封闭,且给出推理过程f1(x)=2x-1,f2(x)=-
1
2
x2-
1
2
x+1
,f3(x)=2x-1,f4(x)=cosx.;
(2)若定义域D2=(1,2),是否存在实数a使函数f(x)=
5x-a
x+2
在D2上封闭,若存在,求出a的值,并给出证明,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高二下学期期末考试数学文 题型:解答题

(本小题满分16分:8+8)

给出函数封闭的定义:若对于定义域D内的任一个自变量,都有函数值,则称函数y=f(x)在 D上封闭。

(1)若定义域判断下列函数中哪些在上封闭,并给出推理过程;

    

(2)若定义域是否存在实数,使函数上封闭,若存在,求出值,若不存在,请说明理由。

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断下列函数中哪些在D1上封闭(写出推理过程):f1(x)=2x-1,f2(x)=-数学公式-数学公式+1,f3(x)=2x-1;
(2)若定义域D2=(1,2),是否存在实数a,使得函数f(x)=数学公式在D2上封闭?若存在,求出a的值,并给出证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案