【题目】如图,四棱锥中,底面为菱形,,为等边三角形.
(1)求证:.
(2)若,,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:(),左、右焦点分别是、且,以为圆心,3为半径的圆与以为圆心,1为半径的圆相交于椭圆上的点
(1)求椭圆的方程;
(2)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点
①求的值;
②令,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”沿线的20国青年评选出了中国“新四大发明”:高铁、支付宝、共享单车和网购.2019年春节期间,“支付宝大行动”用发红包的方法刺激支付宝的使用.某商家统计前5名顾客扫描红包所得金额分别为5.2元,2.9元,3.3元,5.9元,4.8元,商家从这5名顾客中随机抽取3人赠送饮水杯.
(1)求获得饮水杯的三人中至少有一人的红包超过5元的概率;
(2)统计一周内每天使用支付宝付款的人数x与商家每天的净利润y元,得到7组数据,如表所示,并作出了散点图.
(i)直接根据散点图判断,与出哪一个适合作为每天的净利润的回归方程类型.
(ii)根据(i)的判断,建立y关于x的回归方程;若商家当天的净利润至少是1400元,估计使用支付宝付款的人数至少是多少?(a,b,c,d的值取整数)
参考数据:
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点.
(Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;
(Ⅱ)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点、的坐标分别为和,动点P满足,设动点P的轨迹为,以动点P到点距离的最大值为长轴,以点、为左、右焦点的椭圆为,则曲线和曲线的交点到轴的距离为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为( )
A. 6B. 5C. 4D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)若直线与椭圆交于,两点,直线,分别与轴交于点,,求证:在轴上存在点,使得无论非零实数怎样变化,总有为直角,并求出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com