精英家教网 > 高中数学 > 题目详情
已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3•a4=117,a2+a5=22
(1)求通项an
(2)若数列{bn}是等差数列且bn=
Sn
n+c
,求非零常数c;
(3)求f(n)=
bn
(n+36)•bn+1
(n∈N+)
的最大值.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)设等差数列{an}的公差为d>0,由a3•a4=117,a2+a5=22.可得
a3a4=117
a3+a4=22
,解得
a3=9
a4=13
,即可得出.
(2)由(1)可得Sn=
n(1+4n-3)
2
=n(2n-1),bn=
n(2n-1)
n+c
,利用2b2=b1+b3,即可解出c.
(3)由(2)可得:bn=2n,f(n)=
bn
(n+36)bn+1
=
1
n+
36
n
+37
,利用基本不等式的性质即可得出.
解答: 解:(1)设等差数列{an}的公差为d>0,
∵a3•a4=117,a2+a5=22.
a3a4=117
a3+a4=22

解得
a3=9
a4=13

∴d=a4-a3=4,
∴an=a3+4(n-3)=9+4(n-3)=4n-3.
即an=4n-3.
(2)由(1)可得Sn=
n(1+4n-3)
2
=n(2n-1),
∴bn=
n(2n-1)
n+c

∴b1=
1
1+c
b2=
6
2+c
b3=
15
3+c

∵数列{bn}是等差数列,
∴2b2=b1+b3
12
2+c
=
1
1+c
+
15
3+c

化为2c2+c=0,
∵c≠0,
c=-
1
2

(3)由(2)可得:bn=
n(2n-1)
n-
1
2
=2n,
f(n)=
bn
(n+36)bn+1
=
2n
2(n+1)(n+36)
=
1
n+
36
n
+37
1
2
n•
36
n
+37
=
1
49
,当且仅当n=6时取等号.
∴f(n)的最大值为
1
49
点评:本题考查了等差数列与等比数列的通项公式与前n项和公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|y=
1-x2
,x∈Z},B={y|y=x2+1,x∈A},那么A∪B=(  )
A、{1}
B、{-1,0,1,2}
C、[0,1]
D、[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2-3)
(1)讨论函数的y=f(x)的单调性;
(2)设x1,x2为区间[0,1]上任意两个自然数的值,证明|f(x1)-f(x2)|<e.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
lnx
x
的单调递增区间为(  )
A、(-∞,0)和(0,e)
B、(-∞,0)和(e,+∞)
C、(0,e)
D、(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=2n+n,则其前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an+1=an+2(n∈N*),a2,a5,a14构成等比数列.记bn=
1
anan+1
(n∈N*)
(1)数列{an}的通项公式;
(Ⅱ)设{bn}的前n项和为Rn.是否存在正整数k,使得Rk≥2k成立?若存在,找出一个正整数k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

李华通过英语听力测试的概率是
1
3
,他连续测试5次,那么其中恰有2次获得通过的概率是(  )
A、
80
243
B、
40
243
C、
8
243
D、
2
15

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B、命题“若x=y,则sinx=siny”的逆否命题为真命题
C、“x=-1”是“x2-5x-6=0”的必要不充分条件
D、命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1<0”

查看答案和解析>>

科目:高中数学 来源: 题型:

由于盐碱化严重,某地的耕地面积在最近50年内减少了10%.如果按此规律,设2012年的耕地面积为m,则2017年的耕地面积为(  )
A、(1-0.1250)m
B、0.9
1
10
m
C、0.9250m
D、(1-0.9
1
10
)m

查看答案和解析>>

同步练习册答案