精英家教网 > 高中数学 > 题目详情
5.如图,在直四棱柱ABCD-A1B1C1D1中(侧棱垂直于底面的四棱柱为直四棱柱),底面四边形ABCD是直角梯形,其中AB⊥AD,AB=BC=1,且AD=$\sqrt{2}$AA1=2.
(1)求证:平面CDD1C1⊥平面ACD1
(2)求三棱锥A1-ACD1的体积.

分析 (1)在底面四边形ABCD内过C作CE⊥AD于E,由已知求得AC=$\sqrt{2}$,CD=$\sqrt{2}$,则AC2+DC2=AD2,得AC⊥CD.再由题意知CC1⊥平面ABCD,从而AC⊥CC1,由线面垂直的判定可得AC⊥平面CDD1C1,进一步得到平面CDD1C1⊥平面ACD1
(2)由三棱锥A1-ACD1与三棱锥C-AA1D1是相同的,利用等积法求出三棱锥C-AA1D1的体积即可.

解答 (1)证明:在底面四边形ABCD内过C作CE⊥AD于E,
由底面四边形ABCD是直角梯形,AB⊥AD,AB=BC=1,以及AD=2,可得AC=$\sqrt{2}$,CE=1,
则CD=$\sqrt{2}$,
∴AC2+DC2=AD2,得AC⊥CD.
又由题意知CC1⊥平面ABCD,从而AC⊥CC1,而CC1∩CD=C,∴AC⊥平面CDD1C1
又AC?平面ACD1
∴平面CDD1C1⊥平面ACD1
(2)解:∵三棱锥A1-ACD1与三棱锥C-AA1D1是相同的,
故只需求三棱锥C-AA1D1的体积即可,
而CE⊥AD,且由AA1⊥平面ABCD,可得CE⊥AA1
又∵AD∩AA1=A,∴有CE⊥平面ADD1A1,即CE为三棱锥C-AA1D1的高.
故${V_{{A_1}-AC{D_1}}}={V_{C-A{A_1}{D_1}}}=\frac{1}{3}×\frac{1}{2}•A{A_1}•{A_1}{D_1}•CE=\frac{1}{3}×\frac{1}{2}×\sqrt{2}×2×1=\frac{{\sqrt{2}}}{3}$.

点评 本题考查面面垂直的判定和性质,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知点A的坐标为(4,2),F是抛物线y2=2x的焦点,点M是抛物线上的动点,当|MF|+|MA|取得最小值时,点M的坐标为(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知幂函数$f(x)={(m-1)^2}{x^{{m^2}-4m+2}}$在(0,+∞)上单调递增,函数g(x)=2x-t,?x1∈[1,6)时,总存在x2∈[1,6)使得f(x1)=g(x2),则t的取值范围是(  )
A.B.t≥28或t≤1C.t>28或t<1D.1≤t≤28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.p:x>1,q:x>0,则p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为2x+y=0,一个焦点为($\sqrt{5}$,0),则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某同学用“五点法”画函数$f(x)=2sin(2x-\frac{π}{3})+1$在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象时,列表并填入了部分数据,如表:
2x-$\frac{π}{3}$-$\frac{4π}{3}$-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2π}{3}$
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)
(1)请将上表数据补充完整,并在给出的直角坐标系中,画出f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象;
(2)利用函数的图象,直接写出函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在三棱柱ABC-A1B1C1中,M为A1C1的中点,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{A{A_1}}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{BM}$可表示为(  )
A.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$C.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$D.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点P(0,-1)的直线与抛物线x2=-2y公共点的个数为(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在平行六面体ABCD-A'B'C'D'中,$AB=3,AD=4,AA'=4,∠BAD=\frac{π}{2}$,$∠BAA'=\frac{π}{3}$,$∠DAA'=\frac{π}{3}$,则AC'=$\sqrt{69}$.

查看答案和解析>>

同步练习册答案