【题目】设全集U=R,A= ,则A∩(UB)= .
【答案】{x,2<x≤4}
【解析】解:全集U=R,A={x| <1}={x||x﹣1|>1}={x|x<0或x>2};
B={x|x2﹣5x+4>0}={x|x<1或x>4},
∴UB={x|1≤x≤4},
∴A∩(UB)={x|2<x≤4}.
所以答案是:{x|2<x≤4}.
【考点精析】根据题目的已知条件,利用交、并、补集的混合运算的相关知识可以得到问题的答案,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
科目:高中数学 来源: 题型:
【题目】已知关于x的方程x2+2mx+2m+1=0(m∈R).
(1)若方程有两实根,其中一根在区间(﹣1,1)内,另一根在区间(1,2)内,求m的取值范围;
(2)若方程两实根均在区间(﹣1,2)内,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有 >0.
(Ⅰ)证明f(x)在[﹣1,1]上是增函数;
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1对x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点F1 , F2在坐标轴上,离心率为 ,且过点(4,﹣ ),点M(3,m)在双曲线上.
(1)求双曲线方程;
(2)求证:MF1⊥MF2;
(3)求△F1MF2的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用M[A]表示非空集合A中的元素个数,记|A﹣B|= ,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,则实数a的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x取实数,则f(x)与g(x)表示同一个函数的是( )
A.f(x)=x,g(x)=
B.f(x)= ,g(x)=
C.f(x)=1,g(x)=(x﹣1)0
D.f(x)= ,g(x)=x﹣3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.
(1)当a=1, 时,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若不等式m2﹣2km+1+b+ac≥0对所有k∈[﹣1,1]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在[1,+∞)的函数,对任意正实数x,f(3x)=3f(x),且f(x)=1﹣|x﹣2|,1≤x≤3,则使得f(x)=f(2015)的最小实数x为( )
A.172
B.415
C.557
D.89
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com