精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧面底面,底面是直角梯形,.

(1)求证:平面

(2)设为侧棱上一点,,试确定的值,使得二面角的大小为.

【答案】(1)证明见解析;(2).

【解析】

1)根据线面垂直的判定定理,即可证明结论成立;

2)先由(1)得两两垂直,以点为坐标原点,以方向分别为轴,轴,轴正方向,建立空间直角坐标系,分别求出平面与平面的一个法向量,根据向量夹角余弦值与二面角的大小,即可求出结果.

1)因为侧面底面

所以底面,所以

又底面是直角梯形,

所以

因此,所以

,且平面平面

所以平面

(2)由(1)可得两两垂直,

因此以点为坐标原点,以方向分别为轴,轴,轴正方向,建立如图所示的空间直角坐标系;

由(1)可知平面;所以为平面的一个法向量;

又因为

所以

设平面的一个法向量为

,即,令,则,即

所以

又二面角的大小为

所以,化简整理得

解得

因为为侧棱上一点,所以

因此.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资(单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为(单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知圆的圆心为,半径为.以极点为原点,极轴方向为轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线的参数方程为为参数,).

(Ⅰ)写出圆的极坐标方程和直线的普通方程;

(Ⅱ)若直线与圆交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

原命题为真,它的否命题为假;

原命题为真,它的逆命题不一定为真;

一个命题的逆命题为真,它的否命题一定为真;

一个命题的逆否命题为真,它的否命题一定为真;

⑤“,则的解集为的逆命题.

其中真命题是___________.把你认为正确命题的序号都填在横线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

合计

(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中选人,求恰好有名女性的概率;

(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数(常数).

(1)若,求函数的单调区间;

(2)若恒成立,求实数的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆经过点,离心率为. 已知过点的直线与椭圆交于两点

(1)求椭圆的方程;

(2)试问轴上是否存在定点,使得为定值.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数.

1)求值;

2)解的不等式的解集;

3)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案