精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=x3﹣ax+1在区间(1,+∞)内是增函数,则实数a的取值范围是(
A.a<3
B.a>3
C.a≤3
D.a≥3

【答案】C
【解析】解:f′(x)=3x2﹣a,令f′(x)=3x2﹣a>0即x2 , 当a<0时,x∈R,函数f(x)=x3﹣ax+1在区间R内是增函数,
从而函数f(x)=x3﹣ax+1在区间(1,+∞)内是增函数;
当a≥0时,解得x> ,或x<﹣
因为函数在区间(1,+∞)内是增函数,所以 ≤1,
解得0≤a≤3,
综上所述,所以实数a的取值范围是a≤3.
故选C.
求出f′(x),因为要求函数的增区间,所以令f′(x)大于0,然后讨论a的正负分别求出x的范围,根据函数在区间(1,+∞)上是增函数列出关于a的不等式,求出a的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】
(1)已知点M(1,-3),N(1,2),P(5,y),且∠NMP=90°,则log8(7+y)=.
(2)若把本题中“∠NMP=90°”改为“log8(7+y)= ”,其他条件不变,则∠NMP=.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在 中, ,点 边上,且

(I)求
(II)求 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD= ,AA1=3,E为CD上一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C;
(2)求三棱锥B1﹣EA1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题: ①﹣3是函数y=f(x)的极值点;
②﹣1是函数y=f(x)的最小值点;
③y=f(x)在x=0处切线的斜率小于零;
④y=f(x)在区间(﹣3,1)上单调递增.
则正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木 的高度 ,垂直放置的标杆 的高度 ,仰角 三点共线),试根据上述测量方案,回答如下问题:

(1)若测得 ,试求 的值;
(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离 (单位:)使 之差较大时,可以提高测量的精确度.若树木的实际高为 ,试问 为多少时, 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的(产品净重,单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,下列命题中:①样本中净重大于或等于98克并且小于102克的产品的个数是60;②样本的众数是101;③样本的中位数是 ; ④样本的平均数是101.3.
正确命题的代号是(写出所有正确命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名六年级学生进行了问卷调查得到如图联表.且平均每天喝500ml以上为常喝,体重超过50kg为肥胖.已知在全部100人中随机抽取1人,抽到肥胖的学生的概率为0.8.

常喝

不常喝

合计

肥胖

60

不肥胖

10

合计

100


(1)求肥胖学生的人数并将上面的列联表补充完整;
(2)是否有95%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. 附:参考公式:x2=

P(x2≥x0

0.05

0.025

0.010

0.005

0.001

x0

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的三个内角 A,B,C 成等差数列,且 a,b,c 分别为角 A,B,C 的对边,求证:(a+b)-1+(b+c)-1=3(a+b+c)-1

查看答案和解析>>

同步练习册答案