精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系中,倾斜角为的直线l过点,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出直线的参数方程(为常数)和曲线的直角坐标方程;

2)若直线交于两点,且,求倾斜角的值.

【答案】(1)直线的参数方程为为参数),曲线的直角坐标方程;(2).

【解析】

1)直接写出直线的参数方程,将曲线的极坐标方程化为,再将代入上式即可得解;

2)把直线的参数方程代入中,得

由一元二次方程根与系数的关系得:,再根据直线的参数方程中参数的几何意义,得,求出的值即可.

1)直线的参数方程为为参数),

曲线 ,即

代入上式得曲线的直角坐标方程为:

2)把直线的参数方程代入中,得

对应的参数分别为

由一元二次方程根与系数的关系得:

根据直线的参数方程中参数的几何意义,得,得.

,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知菱形中,相交于点,将沿折起,使顶点至点,在折起的过程中,下列结论正确的是( )

A.B.存在一个位置,使为等边三角形

C.不可能垂直D.直线与平面所成的角的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两动圆),把它们的公共点的轨迹记为曲线,若曲线轴的正半轴的交点为,且曲线上的相异两点满足:.

1)求曲线的轨迹方程;

2)证明直线恒经过一定点,并求此定点的坐标;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱的底面是菱形,平面,是侧棱上的点

1)证明:平面;

2)若的中点,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;

(1)将表示为的函数;

(2)若,求总用氧量的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出定理:在圆锥曲线中,是抛物线的一条弦,的中点,过点且平行于轴的直线与抛物线的交点为.两点纵坐标之差的绝对值,则的面积,试运用上述定理求解以下各题:

1)若所在直线的方程为的中点,过且平行于轴的直线与抛物线的交点为,求

2)已知是抛物线的一条弦,的中点,过点且平行于轴的直线与抛物线的交点为分别为的中点,过且平行于轴的直线与抛物线分别交于点,若两点纵坐标之差的绝对值,求

3)请你在上述问题的启发下,设计一种方法求抛物线:与弦围成成的“弓形”的面积,并求出相应面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的单调区间;

2)若关于的方程有四个不同的解,求实数应满足的条件;

3)在(2)条件下,若成等比数列,用表示t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:①若,则;②的图象关于点对称;③函数上单调递增;④的图象向右平移个单位长度后所得图象关于轴对称.其中所有正确结论的编号是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果对任意,恒有成立,则称阶缩放函数.

1)已知函数为二阶缩放函数,且当时,,求的值;

2)已知函数为二阶缩放函数,且当时,,求证:函数上无零点;

3)已知函数阶缩放函数,且当时, 的取值范围是,求上的取值范围.

查看答案和解析>>

同步练习册答案