已知数列{an},,,记,,
,若对于任意,A(n),B(n),C(n)成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和.
(1)(2)
解析试题分析:(1)A(n),B(n),C(n)成等差数列
,可知数列{an}是等差数列.
(2)由第(1)的结论知,所以当时 ;当时,
于是:当所以当时 ,数列{|an|}成等差,首项为 ,公差为,由等差数列求和公式求解;
或直接求
当时,数列{|an|}从第三项起成等差数列,可由等差数列求和公式解决,或作如下变化:
==其余便可由等差数列求和公式直接求解.
试题解析:
解:(1)根据题意A(n), B(n), C(n)成等差数列, ∴A(n)+ C(n)=2 B(n); 2分
整理得 ,
∴数列{an}是首项为,公差为3的等差数列. 4分
∴;..........................6分
(2) , 记数列的前n项和为Sn.
当时, ;9分
当时, ;.11分
综上,. ..12分
考点:1、等差数列的通项公式与前 项和公式;2、等差中项的性质.
科目:高中数学 来源: 题型:解答题
已知等差数列{}的前n项和为Sn,公差d≠0,且S3=9,a1,a3,a7成等比数列.
(1)求数列{}的通项公式;
(2)设=,求数列{}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.
(1)求a1,a2的值;
(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列的首项为,公差为,等比数列的首项为,公比为,.
(1)求数列与的通项公式;
(2)设第个正方形的边长为,求前个正方形的面积之和.
(注:表示与的最小值.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com