【题目】如图,在直角坐标系中,O为坐标原点.动点P在圆 上,过P作y轴的垂线,垂足为N,点M在射线NP上,满足.
(1)求点M的轨迹G的方程;
(2)过点的直线l交轨迹G 于A,B两点,交圆O于C,D两点.若,求直线l的方程;
(3)设点Q(3, t)(t∈R,t ≠ 0),且,过点P且垂直于OQ的直线m与OQ交于点E,与x轴交于点F,求△OEF周长最大时的直线m的方程.
【答案】(1);(2),,;(3)或
【解析】
(1)设,,利用动点转移可得轨迹的方程.
(2)直线的斜率不存在时满足,当直线的斜率存在时,可设,分别联立直线方程与椭圆方程和圆的方程,利用结合韦达定理计算后可得直线方程.
(3)设,由及点在圆上可以得到,从而,因此为直角三角形,故当为等腰直角三角形时周长最大,此时,故可求得直线的方程.
(1)设,,,由得,即.
∵在圆上,∴,∴为轨迹的方程.
(2)①直线的斜率不存在时,直线,由椭圆,圆的对称性,有, ∴合题意.
②直线的斜率存在时,
设直线,,
由,∴即.
由得,∴,
由得,
∴,由,∴,
∴或,∴直线,.
综上,直线的方程为:,,.
(3)设动点,由得.
又∵,∴, ①
直线与垂直,直线的斜率为,
直线的方程为,∴ ② ,
由①②得:,∴直线与轴交点为.
又∵,∴是以2为斜边的直角三角形, ∴时,周长最大,即是等腰直角三角形,,点坐标为或,
∴直线的方程是或.
科目:高中数学 来源: 题型:
【题目】某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售,已知一只花篮需要用铜丝200米,铁丝300米;编制一只花盆需要100米,铁丝300米,设该厂用所有原来编制个花篮, 个花盆.
(Ⅰ)列出满足的关系式,并画出相应的平面区域;
(Ⅱ)若出售一个花篮可获利300元,出售一个花盘可获利200元,那么怎样安排花篮与花盆的编制个数,可使得所得利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%,今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为( )
A.20% 369
B.80% 369
C.40% 360
D.60% 365
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,点O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点.设x表示点C与原点的距离,y表示点C到点A的距离的4倍与点C到点B的距离的6倍之和.
(1)将y表示为x的函数;
(2)要使y的值不超过70,实数x应该在什么范围内取值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆E: (a>b>0)的左、右焦点F1、F2 , 其离心率e= ,且点F2到直线 =1的距离为 .
(1)求椭圆E的方程;
(2)设点P(x0 , y0)是椭圆E上的一点(x0≥1),过点P作圆(x+1)2+y2=1的两条切线,切线与y轴交于A、B两点,求|AB|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和Sn满足:Sn=nan﹣2n(n﹣1),首项=1.
(1)求数列{an}的通项公式;
(2)设数列的前n项和为Mn,求证: Mn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com