精英家教网 > 高中数学 > 题目详情

【题目】设关于的一元二次方程

(1)若是从0,1,2,3,4五个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若是从区间上任取的一个数,是从区间上任取的一个数,求上述方程有实根的概率.

【答案】(1);(2)

【解析】

(1)列举可得总的基本事件和事件A中包含的基本事件,由古典概型可得;

(2)作出图象,由几何概型可得.

(1)由题意知本题是一个古典概型,设事件A为“方程有实根”,

总的基本事件共15个:(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)(4,0)(4,1)(4,2),

其中第一个数表示a的取值,第二个数表示b的取值.

事件A中包含8个基本事件(a≥2b),(0,0)(1,0)(2,0)(2,1)(3,0)(3,1)(4,0)(4,1)(4,2),

事件A发生的概率为

(2)由题意知本题是一个几何概型,

试验的全部结束所构成的区域为{(a,b)|0≤a≤4,0≤b≤2},

满足条件的构成事件A的区域为{(a,b)|0≤a≤4,0≤b≤2,a≥2b}.

所求的概率是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方造一千多年,例如堑堵指底面为直角三角形,且测量垂直底面的三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,如图,在堑堵中,,若当阳马的体积最大时,则堑堵的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求证:

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且S3=9,a1 , a3 , a7成等比数列.
(1)求数列{an}的通项公式;
(2)若an≠a1时,数列{bn}满足bn=2 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 ( t为参数).以原点为极点,x轴正半轴为极轴 建立极坐标系,圆C的方程为 ρ=2 sinθ.
(1)写出直线l的普通方程和圆C的直角坐标方程;
(2)若点P的直角坐标为(1,0),圆C与直线l交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费。为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照…,分成9组,制成了如图所示的频率分布直方图。

(1)求直方图中的值

(2)设该市有60万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(3)若该市政府希望使82%的居民每月的用水量不超过标准(吨),估计的值,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生更多的了解数学史知识,梁才学校高二年级举办了一次追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:

序号

分组

组中值

频数

频率

i

(分数)

Gi

(人数)

Fi

1

65

0.12

2

75

20

3

85

0.24

4

95

合计

50

1

(1)填充频率分布表中的空格;

(2)为鼓励更多的学生了解数学史知识,成绩不低于85分的同学能获奖,请估计在

参加的800名学生中大概有多少名学生获奖?(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y= x2的焦点,离心率等于
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若 1 ,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,其焦点与双曲线的焦点重合,且椭圆的短轴的两个端点与其一个焦点构成正三角形.

(1)求椭圆的方程;

(2)过双曲线的右顶点作直线与椭圆交于不同的两点.

①设,当为定值时,求的值;

②设点是椭圆上的一点,满足,记的面积为的面积为,求的取值范围.

查看答案和解析>>

同步练习册答案