精英家教网 > 高中数学 > 题目详情
如图,梯形ABCD和正△PAB所在平面互相垂直,其中ABDC,AD=CD=
1
2
AB
,且O为AB中点.
(I)求证:BC平面POD;
(II)求证:AC⊥PD.
证明:(I)因为O为AB中点,
所以BO=
1
2
AB
,(1分)
又ABCD,CD=
1
2
AB

所以有CD=BO,CDBO,(2分)
所以ODCB为平行四边形,
所以BCOD,(3分)
又DO?平面POD,BC?平面POD,
所以BC平面POD.(5分)
(II)连接OC.
因为CD=BO=AO,CDAO,
所以ADCO为平行四边形,(6分)
又AD=CD,所以ADCO为菱形,
所以AC⊥DO,(7分)
因为正三角形PAB,O为AB中点,
所以PO⊥AB,(8分)
又因为平面ABCD⊥平面PAB,平面ABCD∩平面PAB=AB,
所以PO⊥平面ABCD,(10分)
而AC?平面ABCD,所以PO⊥AC,
又PO∩DO=O,所以AC⊥平面POD.(12分)
又PD?平面POD,所以AC⊥PD.(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知直二面角α-l-β,A∈α,B∈β,A,B两点均不在直线l上,又直线AB与l成30°角,且线段AB=8,则线段AB的中点M到l的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

棱长为a的正方体A1B1C1D1-ABCD中,O为面ABCD的中心.
(1)求证:AC1⊥平面B1CD1
(2)求四面体OBC1D1的体积;
(3)线段AC上是否存在P点(不与A点重合),使得A1P面CC1D1D?如果存在,请确定P点位置,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,M、N分别是AB、PC的中点
(1)求证:MN平面PAD;
(2)若∠PAD=45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a,b是空间两条不相交的直线,那么过直线b且平行于直线a的平面(  )
A.有且仅有一个B.至少有一个
C.至多有一个D.有无数个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB,点E是PD的中点.
(1)求证:PB平面ACE;
(2)若四面体E-ACD的体积为
2
3
,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥P-ABCD中,ABCE为菱形,E、G、F分别是线段AD、CE、PB的中点.求证:FG平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,已知AB=2AD=4,E为AB的中点,现将△AED沿DE折起,使点A到点P处,满足PB=PC,设M、H分别为PC、DE的中点.
(1)求证:BM平面PDE;
(2)线段BC上是否存在一点N,使BC⊥平面PHN?试证明你的结论;
(3)求△PBC的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱PD⊥底面ABCD,PD=BC,E是PC的中点,求证:PA平面EDB.

查看答案和解析>>

同步练习册答案