精英家教网 > 高中数学 > 题目详情

设等差数列的前项和为,已知.
(1)求
(2)若从中抽取一个公比为的等比数列,其中,且.
①当取最小值时,求的通项公式;
②若关于的不等式有解,试求的值.

(1),(2)①,②

解析试题分析:(1)解等差数列问题,主要从待定系数对应关系出发.由等差数列前n项和公式求出公差d即可,(2)①利用等比数列每一项都为等差数列中项这一限制条件,对公比逐步进行验证、取舍,直到满足.因为研究的是取最小值时的通项公式,因此可从第二项开始进行验证,首先满足的就是所求的公比,②由①易得的函数关系,并由为正整数初步限制取值范围,当时适合题意,当时,不合题意.再由不等式有解,归纳猜想并证明取值范围为本题难点是如何说明当时不等式无解,可借助研究数列单调性的方法进行说明.
试题解析:(1)设等差数列的公差为,则,解得,  2分
所以.              4分
(2)因为数列是正项递增等差数列,所以数列的公比
,则由,得,此时,由
解得,所以,同理;          6分
,则由,得,此时
另一方面,,所以,即,    8分
所以对任何正整数是数列的第项.所以最小的公比
所以.                    10分
(3)因为,得,而
所以当时,所有的均为正整数,适合题意;
时,不全是正整数,不合题意.
有解,所以有解,经检验,当时,都是的解,适合题意;          12分
下证当时,无解, 设

因为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且.
(1)求数列的通项公式;
(2)记,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sna1=1,且对任意正整数n,点(an+1Sn)在直线3x+2y-3=0上.
(1)求数列{an}的通项公式;
(2)是否存在实数λ,使得数列为等差数列?若存在,求出λ的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足是数列 的前项和.
(1)若数列为等差数列.
①求数列的通项
②若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知,求数列{bn}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列是公比为正数的等比数列,.
(1)求数列的通项公式;
(2)设数列是首项为,公差为的等差数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数 ,当时取得最小值-4.
(1)求函数的解析式;
(2)若等差数列前n项和为,且,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:(其中为非零常数,).
(1)判断数列是不是等比数列?
(2)求
(3)当时,令为数列的前项和,求.

查看答案和解析>>

同步练习册答案