已知椭圆,为坐标原点,椭圆的右准线与轴的交点是.
(1)点在已知椭圆上,动点满足,求动点的轨迹方程;
(2)过椭圆右焦点的直线与椭圆交于点,求的面积的最大值
科目:高中数学 来源: 题型:解答题
设椭圆的左、右焦点分别为,,右顶点为A,上顶点为B.已知=.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点,经过点的直线与该圆相切与点M,=.求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,且直线AB过点(0,-1),求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆:的左顶点为,直线交椭圆于两点(上下),动点和定点都在椭圆上.
(1)求椭圆方程及四边形的面积.
(2)若四边形为梯形,求点的坐标.
(3)若为实数,,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)设是曲线上的动点,直线,分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;
(3)在(2)的条件下,记直线与的交点为,试探究点与曲线的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,且离心率.
(1)求椭圆C的方程;
(2)已知过点的直线与该椭圆相交于A、B两点,试问:在直线上是否存在点P,使得是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com