精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,其中 ,k∈R.
(1)当k为何值时,有
(2)若向量 的夹角为钝角,求实数k的取值范围.

【答案】
(1)解:由 ,设

所以 ,即

,得 不共线,

所以t﹣k=2+t=0,解得k=﹣2


(2)解:因向量 的夹角为钝角,

所以

,得

所以 ,即k<8,

又向量 不共线,由(1)知k≠﹣2,

所以k<8且k≠﹣2


【解析】(1)根据题意,设 ,则有 ,结合向量 的坐标,可得t﹣k=2+t=0,解可得k的值,即可得答案;(2)根据题意,若向量 的夹角为钝角,则有 <0,由数量积的计算公式可得 ,结合向量不共线分析可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知7cos2α﹣sinαcosα﹣1=0,α∈( ),求cos2α和 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了70人,从女生中随机抽取了50人,男生中喜欢数学课程的占,女生中喜欢数学课程的占,得到如下列联表.

喜欢数学课程

不喜欢数学课程

合计

男生

女生

合计

(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;

(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,求抽取的学生中至少有1名是女生的概率..

附:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C (ab0)的离心率为且过点(1 )过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线lxm(ma)于点M.已知点B(1,0),直线PBl于点N

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abccosB

(Ⅰ)若c2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=﹣ x3+ x2+2ax.
(1)当a=1时,求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在( ,+∞)上存在单调递增区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个多面体的直观图(图1)及三视图(图2)如图所示,其中M,N分别是AF,BC的中点

(1)求证:MN∥平面CDEF:
(2)求二面角A﹣CF﹣B的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点在抛物线上,且

(1)求抛物线的方程;

(2)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数fx=ex﹣2x+2ax∈R

1)求fx)的单调区间及极值;

2)求证:当aln2﹣1x0时,exx2﹣2ax+1

查看答案和解析>>

同步练习册答案