精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{1}{2}$x2+$\frac{a}{x}$(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在区间[1,+∞)上为增函数,求实数a的值.

分析 (1)a=0时容易判断出f(x)是偶函数,对于a≠0时能够判断出是非奇非偶函数,只需举反例说明即可;
(2)求f′(x),则有f′(x)≥0在[2,+∞)上恒成立,便得到a≤2x3恒成立,从而得到a≤16,这便得出了a的取值范围.

解答 解:(1)当a=0时,f(x)=$\frac{1}{2}$x2,对任意x∈(-∞,0)∪(0,+∞),f(-x)=(-x)2=x2=f(x),∴f(x)为偶函数;
当a≠0时,f(x)=$\frac{1}{2}$x2+$\frac{a}{x}$(a≠0,x≠0),取x=±1,得f(-1)+f(1)=1≠0,f(-1)-f(1)=-2a≠0,∴f(-1)≠-f(1),f(-1)≠f(1);
∴函数f(x)既不是奇函数,也不是偶函数;
(2)f′(x)=x-$\frac{a}{{x}^{2}}$=$\frac{{x}^{3}-a}{{x}^{2}}$;
∴x∈[1,+∞)时,$\frac{{x}^{3}-a}{{x}^{2}}$≥0恒成立,即a≤x3恒成立,x3在[1,+∞)的最小值为1,∴a≤1;
∴a的取值范围是(-∞,1].

点评 考查奇偶函数的定义,函数单调性和函数导数符号的关系,x3的单调性并根据单调性求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.当k为什么实数时,方程组$\left\{\begin{array}{l}{4x+3y=60}\\{kx+(k+2)y=60}\end{array}\right.$的解满足x>y>0的条件?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.猜测(1-$\frac{4}{1}$)(1-$\frac{4}{9}$)…[1一$\frac{4}{(2n-1)^{2}}$]对n∈N且n≥1成立的-个表达式为 (  )
A.-$\frac{n+2}{n}$B.$\frac{2n+1}{2n-1}$C.$-\frac{2n+1}{2n-1}$D.-$\frac{n+1}{n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在如图中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确的吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l与曲线f(x)=x2-3x+2+2lnx相切,则直线l倾斜角的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线L与线y=x3-3x2+2x相切,分别求直线l的方程,使之满足:(1)切点为(0,0); (2)经过点(0.0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=3x2+2x-${∫}_{0}^{1}$f(x)dx,则${∫}_{0}^{1}$f(x)dx=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆的焦点为F1(0,-2),F2(0,2),椭圆上的点到两个焦点的距离之和为8,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的导数:
(1)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$);    
(2)y=sin2(2x+$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案