精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,过点的直线与原点的距离为.

1)求椭圆C的标准方程;

2)设分别为椭圆C的左、右焦点,过作直线交椭圆于PQ两点,求面积的最大值.

【答案】1;(2

【解析】

1)写出直线方程的截距式,化为一般式,由点到直线的距离公式得到关于的方程,结合椭圆离心率以及隐含条件求解的值,即可得到椭圆方程;

2)由题意设直线方程,与椭圆方程联立,化为关于的一元二次方程,利用根与系数的关系可得的纵坐标的和与积,代入三角形面积公式,换元后利用基本不等式求得面积的最大值.

1)直线的方程为,即

由原点到直线的距离为,即.

又椭圆的离心率,得,而

所以

故椭圆C的标准方程为.

2)由(1)可得,设

由于直线PQ的斜率不为0,故设其方程为

,得

所以

所以

,则,则

当且仅当,即,即时,的面积取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为矩形, .侧面底面.

(1)证明:

(2)设与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面积为2.

(1)求AD的长;

(2)求△CBD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C上异于AB的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等差数列的前项和为,若,且成等比数列.

(1)求的通项公式;

(2)设,记数列的前项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xax+(a1)

1)讨论函数的单调性;

2)证明:若,则对任意xxxx,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,若是函数的极值点,求证:

(2)(i)求证:当时,

(ii)若不等式对任意恒成立,求实数的取值范围.

注:e=2.71828...为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

同步练习册答案