【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
分 组 | 频 数 | 频 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 |
|
[80,90) |
|
|
[90,100] | 14 | 0.28 |
合 计 |
| 1.00 |
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.
【答案】(1)答案见解析;(2)83.125;(3)
【解析】试题分析:
(1)结合题意补全频率分布表,然后绘制频率分布直方图即可;
(2)设中位数为x,利用中位数将面积分为0.5列方程可得中位数约为83.125.
(3)由题意可得抽取的分数在[60,70)和[80,90)的人数分别为2人和4人.则从已抽取的6人中任选两人的所有可能结果有15种,2人分数都在[80,90)的事件共6种,结合古典概型计算公式可得满足题意的概率值为.
试题解析:
(1)填写频率分布表中的空格,如下表:
分 组 | 频 数 | 频 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.2 |
[80,90) | 16 | 0.32 |
[90,100] | 14 | 0.28 |
合 计 | 50 | 1.00 |
补全频率分布直方图,如下图:
(2)设中位数为x,依题意得0.04+0.16+0.2+0.032×(x-80)=0.5,
解得x=83.125,所以中位数约为83.125.
(3)由题意知样本分数在[60,70)有8人,样本分数在[80,90)有16人,
用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,
则抽取的分数在[60,70)和[80,90)的人数分别为2人和4人.
记分数在[60,70)的为a1,a2,在[80,90)的为b1,b2,b3,b4.
从已抽取的6人中任选两人的所有可能结果有15种,分别为{a1,a2},{a1,b1},{a1,b2},{a1,b3},{a1,b4},{a2,b1},{a2,b2},{a2,b3},{a2,b4},{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4},
设“2人分数都在[80,90)”为事件A,
则事件A包括{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4}共6种,所以P(A)= .
科目:高中数学 来源: 题型:
【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)=是奇函数.
(1)求b的值,判断并用定义法证明f(x)在R上的单调性;
(2)解不等式f(2x+1)+f(x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知三点O(0,0),A(2, ),B(2 , ).
(1)求经过O,A,B的圆C1的极坐标方程;
(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为 (θ是参数),若圆C1与圆C2外切,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=x2+|x﹣m|(m为实数)是偶函数,记a=f( e),b=f(log3π),c=f(em)(e为自然对数的底数),则a,b,c的大小关系( )
A.a<b<c
B.a<c<b
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.
(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;
(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5);
(i)若该鲜奶店一天购进30瓶鲜牛奶,求这100天的日利润(单位:元)的平均数;
(ii) 若该鲜奶店一天购进30瓶鲜牛奶,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着国民生活水平的提高,利用长假旅游的人越来越多,其公司统计了2012到2016年五年间本公司职工每年春节期间外出旅游的家庭数,具体统计数据如表所示:
年份x | 2012 | 2013 | 2014 | 2015 | 2016 |
家庭数y | 6 | 10 | 16 | 22 | 26 |
(1)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程y=bx+a,判断它们之间是否是正相关还是负相关;
(2)根据所求的直线方程估计该公司2019年春节期间外出的旅游的家庭数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com