精英家教网 > 高中数学 > 题目详情

【题目】定长为2的线段AB的两个端点在以点0 为焦点的抛物线x2=2py上移动,记线段AB的中点为M,求点Mx轴的最短距离,并求此时点M的坐标

【答案】最短距离为,

【解析】试题分析:由题意得到抛物线的方程,设直线的方程,联立方程组,得到,根据,求得,进而利用基本不等式,即可求解的最小值,得到此时点的坐标.

试题解析:

依题意可得抛物线的方程为x2=y.

设直线AB的方程为y=kx+bkR),

联立方程组2x2-kx-b=0.

Ax1,y1),Bx2y2),则x1+x2=,x1x2=-,y1+y2=.

因为|AB|=2,所以(1+k2[x1+x22-4x1x2]=4

所以b=

所以yM=

=.

当且仅当=k=±时取等号,

所以点Mx轴的最短距离为,此时点M的坐标为( .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤≤27},B={x|>1}.

(1)分别求A∩B,()∪A;

(2)已知集合C={x|1<x<a},若CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(I)求的标准方程;

(Ⅱ)若为坐标原点, 的焦点,过点且倾斜角为的直线 两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知⊙O的方程x2+y2=4,直线l:x=4,在以O为极点,x轴的正半轴为极轴的极坐标系中,过极点作射线交⊙O于A,交直线l于B.
(1)写出⊙O及直线l的极坐标方程;
(2)设AB中点为M,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在RtABC中,已知点A-20,直角顶点B0-2,点Cx轴上

1Rt△ABC外接圆的方程;

2求过点-40且与Rt△ABC外接圆相切的直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且
(1)求角C的值;
(2)设函数 ,图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:(x+1)2+y2=25,圆C2:(x﹣1)2+y2=1,动圆C与圆C1和圆C2均内切.

(1)求动圆圆心C的轨迹E的方程;
(2)点P(1,t)为轨迹E上点,且点P为第一象限点,过点P作两条直线与轨迹E交于A,B两点,直线PA,PB斜率互为相反数,则直线AB斜率是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABPAPBC分别为⊙O的切线和割线切点ABD的中点,ACBD相交于点EABPE相交于点F直线CF交⊙O于另一点GPA于点K.

证明:(1)KPA的中点;(2)..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=
(1)用直尺或三角板画出y=f(x)的图象;
(2)求f(x)的最小值和最大值以及单调区间.

查看答案和解析>>

同步练习册答案