1 |
3 |
1 |
2 |
1 |
2 |
16 |
3 |
AP2+AQ2 |
2 |
科目:高中数学 来源:2015届广东省高一下学期第一次段考文科数学试卷(解析版) 题型:解答题
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
查看答案和解析>>
科目:高中数学 来源:2014届湖北武汉部分重点中学高二上学期期末考试文科数学卷(解析版) 题型:解答题
(本小题13分)如图1,在三棱锥P—ABC中,平面ABC,,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。
(1)证明:平面PBC;
(2)求三棱锥D—ABC的体积;
(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。
查看答案和解析>>
科目:高中数学 来源:2014届广东省高一5月月考数学试卷(解析版) 题型:解答题
(本小题满分14分)
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1) 证明:AD⊥平面PBC;
(2) 在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
查看答案和解析>>
科目:高中数学 来源:2014届福建省高一下学期第一次月考数学试卷 题型:解答题
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com