ÒÑÖªµÈ²îÊýÁÐ{log4£¨an-1£©}£¨n¡ÊN*£©£¬ÇÒa1=5£¬a3=65£¬º¯Êýf£¨x£©=x2-4x+4£¬ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn=f£¨n£©£¬
£¨1£©ÇóÊýÁÐ{an}ÓëÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©¼ÇÊýÁÐcn=£¨an-1£©•bn£¬ÇÒ{cn}µÄÇ°nÏîºÍΪTn£¬ÇóTn£»
£¨3£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{dn}ÖУ¬ËùÓÐÂú×ãdk•dk+1£¼0µÄÕûÊýkµÄ¸öÊý³ÆΪÕâ¸öÊýÁеÄÒìºÅÊý£¬Áîdn=Êýѧ¹«Ê½£¨n¡ÊN*£©£¬ÊÔÎÊÊýÁÐ{dn}ÊÇ·ñ´æÔÚÒìºÅÊý£¬Èô´æÔÚ£¬ÇëÇó³ö£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

½â£º£¨1£©ÉèµÈ²îÊýÁÐ{log4£¨an-1£©}µÄ¹«²îΪd£¬
ËùÒÔ2log4£¨a2-1£©=log4£¨a1-1£©+log4£¨a3-1£©£¬
¼´2[log4£¨5-1£©+d]=log4£¨5-1£©+log4£¨65-1£©£¬
µÃd=1£¬ËùÒÔlog4£¨an-1£©=1+£¨n-1£©¡Á1=n£¬µÃan=4n+1£¬
ÓÉSn=f£¨n£©=n2-4n+4=£¨n-2£©2£¬
µ±n=1ʱ£¬b1=S1=1£¬
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=£¨n-2£©2-£¨n-3£©2=2n-5£¬ÑéÖ¤n=1ʱ²»Âú×ã´Ëʽ£¬ËùÒÔbn=
£¨2£©ÓÉ£¨1£©¿ÉµÃ£¬µ±n=1ʱ£¬c1=4¡Á1£¬
µ±n¡Ý2ʱ£¬cn=4n¡Á£¨2n-5£©£¬
ËùÒÔTn=4¡Á1+42¡Á£¨-1£©+43¡Á1+44¡Á3++4n¡Á£¨2n-5£©£¬¢Ù
4Tn=42+43¡Á£¨-1£©+44¡Á1+45¡Á3++4n¡Á£¨2n-7£©+4n+1¡Á£¨2n-5£©£¬¢Ú
¢Ù¼õÈ¥¢ÚµÃ
-3Tn=-28+43¡Á2+44¡Á2+45¡Á2++4n¡Á2-4n+1¡Á£¨2n-5£©=-28+-4n+1¡Á£¨2n-5£©£¬
¹ÊTn=-+£®
£¨3£©ÓÉÌâÒâ¿ÉµÃdn=£¬
ÒòΪd1=-3£¼0£¬d2=1+4=5£¾0£¬d3=-3£¼0£¬
ËùÒÔk=1£¬k=2ʱ¶¼Âú×ãdk•dk+1£¼0£¬
µ±n¡Ý3ʱ£¬dn+1-dn=-=£¾0£¬
¼´µ±n¡Ý3ʱ£¬ÊýÁÐ{dn}µ¥µ÷µÝÔö£¬
ÒòΪd4=-£¼0£¬ÓÉdn=1-£¾0£¬n¡ÊN*¿ÉµÃn¡Ý5£¬
¿ÉÖªk=4ʱÂú×ãdk•dk+1£¼0£¬
×ÛÉÏ¿ÉÖªÊýÁÐ{dn}ÖдæÔÚ3¸öÒìºÅÊý£®
·ÖÎö£º£¨1£©ÓÉÓÚÒÑÖªµÈ²îÊýÁÐ{log4£¨an-1£©}£¨n¡ÊN*£©£¬ÇÒa1=5£¬a3=65£¬ÉèµÈ²îÊýÁÐ{log4£¨an-1£©}µÄ¹«²îΪd£¬ÀûÓÃÌõ¼þ½¨Á¢·½³Ì¿ÉÒÔÇóµÃµÃan=4n+1£¬ÔÙÓк¯Êýf£¨x£©=x2-4x+4£¬ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn=f£¨n£©£¬ÀûÓÃÒÑÖªÊýÁеÄÇ°nÏîºÍÇó³öͨÏî¼´¿É£»
£¨2£©ÓУ¨1£©¿ÉµÃc1=4¡Á1£¬µ±n¡Ý2ʱ£¬cn=4n¡Á£¨2n-5£©£¬ÀûÓôíλÏà¼õ·¨¼´¿ÉÇóÊýÁÐcn=£¨an-1£©•bn£¬ÇÒ{cn}µÄÇ°nÏîºÍΪTn£»
£¨3£©ÓÉÌâÒâ¿ÉµÃdn=£¬´úÈëÇóµÄk=1£¬k=2ʱ¶¼Âú×ãdk•dk+1£¼0£¬µ±n¡Ý3ʱ£¬ÊýÁÐ{dn}µ¥µ÷µÝÔö£¬ÀûÓõ¥µ÷ÐÔ¼´¿É½âµÄ£®
µãÆÀ£º´ËÌ⿼²éÁ˵ȲîÊýÁеÄͨÏʽ£®ÒÑÖªÊýÁеÄÇ°nÏîºÍÇóÆäͨÏ´íλÏà¼õ·¨ÇóÊýÁеÄÇ°nÏîµÄºÍ£¬ÓÐÊýÁеÄͨÏî·ÖÎö¸ÃÊýÁеĵ¥µ÷ÐÔ£¬¼°ÊýÁеĺ¯ÊýÌص㣬
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸÷ÏÊÇÕýÊýµÄµÈ±ÈÊýÁÐ{xn}£¬Âú×ãxnan=xn+1an+1=xn+2an+2£¨n¡ÊN*£©
£¨¢ñ£©Ö¤Ã÷ÊýÁÐ{
1
an
}ÊǵȲîÊýÁУ»
£¨¢ò£©Èô
1
a1
=1£¬
1
a8
=15£¬µ±m£¾1ʱ£¬²»µÈʽan+1+an+2+¡­+a2n£¾
12
35
£¨log£¨m+1£©x-logmx+1£©¶Ôn¡Ý2µÄÕýÕûÊýºã³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÐìÖÝÄ£Ä⣩ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪq£¬ÇÒ0£¼q£¼
1
2
£®
£¨1£©ÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÈýÏʹÆä³ÉµÈ²îÊýÁУ¿ËµÃ÷ÀíÓÉ£»
£¨2£©Èôa1=1£¬ÇÒ¶ÔÈÎÒâÕýÕûÊýk£¬ak-£¨aK+1+ak+2£©ÈÔÊǸÃÊýÁÐÖеÄijһÏ
£¨¢¡£©Ç󹫱Èq£»
£¨¢¢£©Èôbn=-log an+1£¨
2
+1£©£¬Sn=b1+b2+¡­+bn£¬Tn=S1+S2+¡­+Sn£¬ÊÔÓÃS2011 ±íʾT2011£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª{an}Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬ÆäÖÐa1=b1=1£¬a4=7£¬a5=b2£¬ÇÒ´æÔÚ³£Êý¦Á£¬¦ÂʹµÃ¶Ôÿһ¸öÕýÕûÊýn¶¼ÓÐan=log¦Ábn+¦Â£¬Ôò¦Á+¦Â=
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª{an}Ϊµ¥µ÷µÝÔöµÄµÈ±ÈÊýÁУ¬SnΪÆäÇ°nÏîºÍ£¬Âú×ãS4=a1+28£¬ÇÒa2£¬a3+2£¬a4ÈÔ¹¹³ÉµÈ²îÊýÁУ®
£¨¢ñ£©Çóa2014£»
£¨¢ò£©ÉèÊýÁÐ{cn}µÄͨÏʽΪcn=log 
1
2
an£¬bn=an•cn£¬TnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÏÖÓÐÕæÃüÌâp£º¡°Tn+n•2n+1¡Ý
1
3
x3-
1
2
£¨2a+1£©x2+£¨a2+a£©xºã³ÉÁ¢£¬a¡Ý1£®x¡Ê[0£¬1]¡±£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

20£®ÒÑÖªµÈ²îÊýÁÐÖУ¬¹«²îd£¾0£¬µÈ±ÈÊýÁÐÖУ¬b1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1£¬Èô

£­£¾log£¨n£¾1£¬n¡ÊN£¬£¾0£¬¡Ù1£©£¬ÇóµÄÈ¡Öµ·¶Î§.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸