精英家教网 > 高中数学 > 题目详情
13.如图,AB,AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于(  )
A.70°B.64°C.62°D.51°

分析 由已知条件推导出∠CAO=∠OAB=∠BAD,∠ABD=90°,由此根据∠DAC=78°,能求出∠ADO的大小

解答 解:∵AB、AC为⊙O的切线,B和C是切点,
延长OB到D,使BD=OB,连接AD,
∴∠CAO=∠OAB=∠BAD,∠ABD=90°,
∵∠DAC=78°,
∴∠BAD=$\frac{1}{3}$∠DAC=26°,
∴∠ADO=90°-26°=64°.
故选:B.

点评 本题考查角的大小的求法,解题时要认真审题,注意切线性质的灵活运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若角终边上有一点P(9,-m)且sinα=-$\frac{3}{5}$,则m的值为$\frac{27}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若一个底面边长为$\frac{\sqrt{6}}{2}$,侧棱长为$\sqrt{6}$的正六棱柱的所有顶点都在一个球面上,求该球的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{3}$sin2ωx-cos2ωx的图象关于直线x=$\frac{π}{3}$对称,其中ω∈(-$\frac{1}{2},\frac{5}{2}$)
(1)求函数f(x)的解析式;
(2)在△ABC中,a,b,c分别为三个内角A,B,C的对边,锐角B满足f($\frac{B}{2}+\frac{π}{12}$)=$\frac{2\sqrt{5}}{3},b=\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°,若BD=1,求三棱锥D-ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.O是锐角△ABC的外心,AO、BO、CO分别交对边于L、M、N,则$\frac{AO}{AL}$+$\frac{BO}{BM}$+$\frac{CO}{CN}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线y2=2px的准线与x2-y2=2的左准线重合,则抛物线的焦点为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知PA垂直于△ABC所在的平面,AB=AC=5,BC=6,PA=3,则点A到平面PBC的距离为(  )
A.4B.$\sqrt{15}$C.$3\sqrt{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知B1、B2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)短轴上的两个顶点,点P是椭圆上不同于短轴端点的任意一点,点Q与点P关于y轴对称,则下列四个命题中,其中正确的是②③.
①直线PB1与PB2的斜率之积为定值-$\frac{{a}^{2}}{{b}^{2}}$;
②$\overrightarrow{P{B}_{1}}$•$\overrightarrow{P{B}_{2}}$>0;
③△PB1B2的外接圆半径的最大值为$\frac{{a}^{2}+{b}^{2}}{2a}$;
④直线PB1与QB2的交点M的轨迹为双曲线.

查看答案和解析>>

同步练习册答案