精英家教网 > 高中数学 > 题目详情

【题目】大城市往往人口密集,城市绿化在健康人民群众肺方面发挥着非常重要的作用,历史留给我们城市里的大山拥有品种繁多的绿色植物更是无价之宝.改革开放以来,有的地方领导片面追求政绩,对森林资源野蛮开发受到严肃查处事件时有发生.2019年的春节后,广西某市林业管理部门在“绿水青山就是金山银山”理论的不断指引下,积极从外地引进甲、乙两种树苗,并对甲、乙两种树苗各抽测了10株树苗的高度(单位:厘米),数据如下面的茎叶图:

(1)据茎叶图求甲、乙两种树苗的平均高度;

(2)据茎叶图,运用统计学知识分析比较甲、乙两种树苗高度整齐情况.

【答案】(1)27(厘米),30(厘米);(2)甲种树苗长的比较整齐,乙种树苗长的参差不齐

【解析】

(1)直接利用公式计算即可.

(2)根据茎叶图的数据分布可得两者的方差的大小,从而得到甲种树苗较为齐整.

(1)甲种树苗的平均高度为(厘米).

乙种树苗的平均高度为(厘米).

(2)甲种树苗的方差为:

乙种树苗的方差为:

故甲种树苗长的比较整齐,乙种树苗长的参差不齐.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双曲线的一条渐近线方程是,坐标原点到直线AB的距离为,其中.

1)求双曲线的方程;

2)若是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点MN,求时,直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个命题,其中正确命题的序号____________.

②函数个零点;

③函数的图象关于点对称。

④已知,函数的图象过点,则的最小值是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下列联表:

男生

女生

合计

挑同桌

30

40

70

不挑同桌

20

10

30

总计

50

50

100

从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;

根据以上列联表,是否有以上的把握认为“性别与在选择座位时是否挑同桌”有关?

下面的临界值表供参考:

参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点分别为棱的中点.

(Ⅰ)求证:∥平面

()求证:平面平面;

()在线段上是否存在一点,使得直线与平面所成的角为300?如果存在,求出线段的长;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的右焦点为是椭圆上任意一点,且点与两个焦点构成的三角形的面积的最大值为8.

1)求椭圆的方程;

2)若是上顶点,直线l交椭圆两点,的重心恰好为点,求直线l的方程的一般式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2pxp>0)上的点A(4,t)到其焦点F的距离为5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)过点F作直线l,使得抛物线C上恰有三个点到直线1的距离为2,求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数.

1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;

2)设x0f(x)的一个零点,证明曲线y=ln x 在点A(x0ln x0)处的切线也是曲线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理过程是演绎推理的是(  )

A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50

B. 由三角形的性质,推测空间四面体的性质

C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分

D. 在数列中,,可得,由此归纳出的通项公式

查看答案和解析>>

同步练习册答案