若数列共有2k项,,其中,该数列的前n项和为,且,其中常数a>1.
(1)求证:数列为等比数列;
(2)若,数列满足,求数列的通项公式;
(3)对于(2)中的数列,设,求出关于k的最简表达式,并求使的最大自然数k
科目:高中数学 来源: 题型:
Tn |
n |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
36 |
11 |
查看答案和解析>>
科目:高中数学 来源: 题型:
2 |
2k-1 |
1 |
n |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
an+1-2 |
a-1 |
2 |
2k-1 |
1 |
n |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)
已知:有穷数列{an}共有2k项(整数k≥2 ),a1=2 ,设该数列的前n项和为 Sn且满足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通项公式;
(2)设bn=log2an ,求{bn}的前n项和Tn;
(3)设cn=,若a=2,求满足不等式 + +…++≥时k的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com