精英家教网 > 高中数学 > 题目详情
设函数y=f(x)=
2x
2x+
2
上两点p1(x1,y1),p2(x2,y2),若
op
=
1
2
(
op1
+
op2
)
,且P点的横坐标为
1
2

(1)求P点的纵坐标;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)
,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n项和,若Tn<a(Sn+2+
2
)
对一切n∈N*都成立,试求a的取值范围.
分析:(1)利用向量知识,确定P为P1P2的中点,即可求得结论;
(2)利用倒序相加法,即可求得结论;
(3)裂项求和,再分离参数,利用基本不等式求最值,即可得到结论.
解答:解:(1)∵
OP
=
1
2
(
OP1
+
OP2
)
,∴P为P1P2的中点,∴x1+x2=1
∴y1+y2=
2x1
2x1+
2
+
2x2
2x2+
2
=1
∴P的纵坐标为
1
2

(2)由(1)知,x1+x2=1,y1+y2=1,f(1)=2-
2

Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)
Sn=f(
n
n
)+f(
n-1
n
)+…+f(
2
n
)+f(
1
n
)

2Sn=(n-1)+2(2-
2
)
=n+3-2
2

Sn=
n+3-2
2
2

(3)Sn+
2
=
n+3
2
Sn+1+
2
=
n+4
2

1
(Sn+
2
)(Sn+1+
2
)
=
4
(n+3)(n+4)
=4(
1
n+3
-
1
n+4

∴Tn=4(
1
4
-
1
5
+
1
5
-
1
6
+…+
1
n+3
-
1
n+4
)=
n
n+4

Tn<a(Sn+2+
2
)
对一切n∈N*都成立
∴a>
Tn
Sn+2+
2
=
2
n+
20
n
+9

设g(n)=n+
20
n
,则g(n)在[
20
,+∞)上是增函数,在(0,
20
)上是减函数
∴g(n)的最小值为9
2
n+
20
n
+9
1
9

∴a>
1
9
点评:本题考查数列的求和,考查裂项法的运用,考查恒成立问题,考查学生分析解决问题的能力,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在R上连续,则f(x)在R上为递增函数是f′(x)>0的…(    )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是一次函数,若f(1)=-1,且f′(2)=-4,则f(x)的解析式为_________.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二下学期第一次统练理科数学试卷(解析版) 题型:选择题

设函数y=f(x)的图象如图所示,则导函数y=f ¢(x)可能为(    )

 

 

查看答案和解析>>

同步练习册答案