精英家教网 > 高中数学 > 题目详情
(2013•哈尔滨一模)双曲线
x2
a2
-
y2
b2
=1
的渐近线与圆x2+(y-2)2=1相切,则双曲线离心率为(  )
分析:先求出渐近线方程,根据直线与圆相切利用圆心到直线的距离等于半径找到a和b的关系,从而推断出a和c的关系,答案可得.
解答:解:由题双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一条渐近线方程为 y=
bx
a
,即bx-ay=0
圆心到此直线的距离为:
d=
|0-2a|
a 2+b 2

因渐近线与圆相切,所以
|0-2a|
a 2+b 2
=1

即 c2=4a2?e=2,
故选C.
点评:本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD外接球表面积为
13
3
π
13
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-
x+1x-1
,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)已知函数①y=sinx+cosx,②y=2
2
sinxcosx
,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)选修4-5:不等式选讲
已知函数f(x)=log2(|x-1|+|x-5|-a)
(Ⅰ)当a=5时,求函数f(x)的定义域;
(Ⅱ)当函数f(x)的定义域为R时,求实数a的取值范围.

查看答案和解析>>

同步练习册答案