精英家教网 > 高中数学 > 题目详情

【题目】己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于AB两点,且OAOB

(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;

(2)若直线l过点(0,2),求l的方程.

【答案】(1);(2).

【解析】

1)根据题意,求得直线OB的方程,利用点到直线的距离公式求得圆心到直线OB的距离,之后应用圆中的特殊三角形,求得弦长;

2)根据题意,可判断直线的斜率是存在的,设出其方程,与圆的方程联立,得到两根和与两根积,根据OAOB,利用向量数量积等于零得到所满足的等量关系式,求得结果.

(1)因为直线OA的方程为

所以直线OB的方程

从而圆心到直线OB的距离为:

所以直线OB被团C截得的弦长为:

(2)依题意,直线l的斜率必存在,不妨设其为k,则l的方程为

又设

所以

从而

所以

因为,所以,即,解得

所以l的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的值域是,则实数的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,),以直角坐标系的原点为极点,以轴的正半轴为极轴建立坐标系,圆的极坐标方程为.

(1)求圆的直角坐标方程(化为标准方程)及曲线的普通方程;

(2)若圆与曲线的公共弦长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,给出下列命题:

①若数列既是等差数列,又是等比数列,则数列是常数列.

②若等差数列满足,则数列是常数列.

③若等比数列满足,则数列是常数列.

④若各项为正数的等比数列满足,则数列是常数列.

其中正确的命题个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对两个品牌的共享单车在编号分别为1,2,3,4,5的五个城市的用户人数(单位:十万)进行统计,得到数据如下:

城市品牌

1

2

3

4

5

品牌

3

4

12

6

8

品牌

4

3

7

9

5

(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有的把握认为“优城”和共享单车品牌有关?

(Ⅱ)若不考虑其它因素,为了拓展市场,对品牌要从这五个城市选择三个城市进行宣传.

(i)求城市2被选中的概率;

(ii)求在城市2被选中的条件下城市3也被选中的概率.

附:参考公式及数据

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)处的切线方程;

(2)当时,函数有两个极值点,求的取值范围;

(3)若在点处的切线与轴平行,且函数时,其图象上每一点处切线的倾斜角均为锐角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面,四边形是正方形,

(Ⅰ)证明:平面平面

(Ⅱ)求三棱锥与四棱锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)设直线的方程为.若直线在两坐标轴上的截距相等,求直线的方程;

(2)过直线上的点作直线,若直线轴围成的三角形的面积为2,则直线的方程.

查看答案和解析>>

同步练习册答案