精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且函数为偶函数。

1)求的解析式;

2)若方程有三个不同的实数根,求实数m的取值范围。

【答案】(1);(2)

【解析】

(1)利用是偶函数得到关于对称,从而,解得a进而得到解析式.

2)问题转化为方程有三个不同实数根,令,对求导,研究单调性及极值,得到大致图像,由图可得m的范围.

(1)由题可知所以函数的对称轴为

由于是偶函数,

所以,即关于对称

所以,即

所以

(2)方程有三个不同的实数根,即方程有三个不同实数根.

,由(1)有

所以,令,则

时,;当时,;当时,

故当时,单调递增;当时,单调递减;当时,单调递增.

所以,当时,取得极大值;当时,取得极小值,

又由于≥0,且当时,;当时,

其大致图像:

所以,方程有三个不同实数根时,m的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCDPDDC,点EPC的中点,作EFPBPB于点F.

1)求证:PA∥平面BDE

2)求证:PB⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。(不要求写过程)

(3) 从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,则平面PQC与平面DCQ的位置关系为(  )

A. 平行 B. 垂直

C. 相交但不垂直 D. 位置关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,其中.

(1)当时,写出函数的单调区间(不要求证明);

(2)若对于任意的,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1x2+y2=1与圆C2x2+y26x+m=0

1)若圆C1与圆C2外切,求实数m的值;

2)在(1)的条件下,若直线x+2y+n=0与圆C2的相交弦长为2,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点作直线交抛物线于两点,若,则的值为( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】

根据过抛物线焦点的弦长公式,利用题目所给已知条件,求得弦长.

根据过抛物线焦点的弦长公式有.故选B.

【点睛】

本小题主要考查过抛物线焦点的弦长公式,即.要注意只有过抛物线焦点的弦长才可以使用.属于基础题.

型】单选题
束】
10

【题目】已知椭圆: 的右顶点、上顶点分别为,坐标原点到直线的距离为,且,则椭圆的方程为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )

A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变

B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变

C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变

D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P到直线y=﹣4的距离比点P到点A01)的距离多3

(1)求点P的轨迹方程;

(2)经过点Q02)的动直线l与点P的轨交于MN两点,是否存在定点R使得∠MRQ=∠NRQ?若存在,求出点R的坐标:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案