精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=\sqrt{3}cos(2x-\frac{π}{3})(x∈R)$,下列结论错误的是(  )
A.函数f(x)的最小正周期为πB.函数f(x)图象关于点$(\frac{5π}{12},0)$对称
C.函数f(x)在区间$[0,\frac{π}{2}]$上是减函数D.函数f(x)的图象关于直线$x=\frac{π}{6}$对称

分析 根据余弦函数的图象与性质,对称轴处取得函数的最值,对称中心是函数与x 轴的交点,由x的范围求得函数的单调性,即可判断选项命题的正误.

解答 解:函数$f(x)=\sqrt{3}cos(2x-\frac{π}{3})(x∈R)$,
f(x)的最小正周期为T=$\frac{2π}{2}$=π,故A正确;
当x=$\frac{5π}{12}$时,y=$\sqrt{3}$cos(2×$\frac{5π}{12}$-$\frac{π}{3}$)=0,
∴f(x)的图象关于点$(\frac{5π}{12},0)$对称,B正确;
x∈[0,$\frac{π}{2}$]时,2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
f(x)=$\sqrt{3}$cos(2x-$\frac{π}{3}$)不是减函数,C错误;
当x=$\frac{π}{6}$时,y=$\sqrt{3}$cos(2×$\frac{π}{6}$-$\frac{π}{3}$)=$\sqrt{3}$为最大值,
∴f(x)的图象关于x=$\frac{π}{6}$对称,D正确.
故选:C.

点评 本题主要考查了余弦函数的图象与性质的应用问题:三角函数在对称轴处取得函数的最值,对称中心是函数与x轴的交点;函数的单调区间、最值的求解采用整体处理;是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知直线l经过双曲线$\frac{{x}^{2}}{4}-{y}^{2}=1$的一个焦点且与其一条渐近线平行,则直线l的方程可以是(  )
A.y=-$\frac{1}{2}x+\frac{\sqrt{5}}{2}$B.y=$\frac{1}{2}x-\sqrt{5}$C.y=2x-$\frac{\sqrt{3}}{2}$D.y=-2x+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:x2>x是x>1的充分不必要条件;命题q:若数列{an}的前n项和Sn=n2,那么数列{an}是等差数列.则下列命题是真命题的是(  )
A.p∨(¬q)B.p∨qC.p∧qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司的管理者通过公司近年来科研费用支出x(百万元)与公司所获得利润y(百万元)的散点图发现,y与x之间具有线性相关关系,具体数据如表:
年份20102011201220132014
科研费用x(百万元)1.61.71.81.92.0
公司所获利润y(百万元)11.522.53
(1)求y对x的回归直线方程;(参考数据:$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=16.3,$\sum_{i=1}^{5}$xiyi=18.5)
(2)若该公司的科研投入从2011年开始连续10年每一年都比上一年增加10万元,预测2017年该公司可获得的利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合A={1,2,3,4,5},B={x|x2-3x<0},则A∩B=(  )
A.{1,2}B.{2,3}C.{3,4}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知θ为第二象限角,且$tan(θ-\frac{π}{4})=3$,则sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题P:?x∈R,x2+2>0.则¬P为(  )
A.$?{x_0}∈R,{x_0}^2+2>0$B.$?{x_0}∈R,{x_0}^2+2≤0$
C.$?{x_0}∈R,{x_0}^2+2<0$D.?x∈R,x2+2≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l1:3x+2y+1=0,l2:x-2y-5=0,设直线l1,l2的交点为A,则点A到直线${l_0}:y=-\frac{3}{4}x-\frac{5}{2}$的距离为(  )
A.1B.3C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{15\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知斜率$k=\frac{1}{2}$且过点A(7,1)的直线l1与直线l2:x+2y+3=0相交于点M.
(Ⅰ)求以点M为圆心且过点B(4,-2)的圆的标准方程C;
(Ⅱ)求过点N(4,2)且与圆C相切的直线方程.

查看答案和解析>>

同步练习册答案