精英家教网 > 高中数学 > 题目详情
15.若0<x<1,则2x,${({\frac{1}{2}})^x}$,log2x之间的大小关系为(  )
A.2x<log2x<${({\frac{1}{2}})^x}$B.2x<${({\frac{1}{2}})^x}$<log2xC.${({\frac{1}{2}})^x}$<log2x<2xD.log2x<${({\frac{1}{2}})^x}$<2x

分析 由0<x<1,利用指数函数、对数函数的单调性求解.

解答 解:0<x<1,
∴0<${({\frac{1}{2}})^x}$=2-x<2x<20=1,
log2x<log21=0,
∴.log2x<${({\frac{1}{2}})^x}$<2x
故选:D.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与双曲线C2:x2-y2=4有相同的右焦点F2,点P是椭圆C1和双曲线C2的一个公共点,若|PF2|=2,则椭圆C1的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知(2-$\sqrt{3}$x)50=a0+a1x+a2x2+…+a50x50,求 (a0+a2+a4+…+a502-(a1+a3+a5+…+a492的值;
(2)已知(1+$\sqrt{x}{)^n}$的展开式中第9项、第10项、第11项的二项式系数成等差数列,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sinx•cosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且sinB+sinC=$\frac{13\sqrt{3}}{14}$,求bc的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.方程4x-9×2x+8=0的解是0或3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=4sin($\frac{x}{3}$+$\frac{π}{6}$),f(3α+π)=$\frac{16}{5}$,f(3β+$\frac{5π}{2}$)=-$\frac{20}{13}$,其中α,β∈[0,$\frac{π}{2}$],则cos(α-β)的值为(  )
A.$\frac{13}{65}$B.$\frac{15}{65}$C.$\frac{48}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若△ABC是边长为a的正三角形,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=(  )
A.$\frac{1}{2}$a2B.-$\frac{1}{2}$a2C.a2D.-a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a、b、c成等比数列,非零实数x,y分别是a与b,b与c的等差中项.
(1)已知 ①a=1、b=2、c=4,试计算$\frac{a}{x}+\frac{c}{y}$的值;
②a=-1、b=$\frac{1}{3}$、c=-$\frac{1}{9}$,试计算$\frac{a}{x}+\frac{c}{y}$的值
(2)试推测$\frac{a}{x}+\frac{c}{y}$与2的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z=1+i,且$\frac{1-ai}{z}$(a∈R)是纯虚数,则实数a的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案