【题目】中国“一带一路”战略构思提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本万元,当年产量不足60台时,万元;当年产量不小于60台时,万元若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.
求年利润万元关于年产量台的函数关系式;
当年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?
科目:高中数学 来源: 题型:
【题目】平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;
(1)画出面PBE与面ABC的交线,说明理由;
(2)求面PBE与面ABC所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列和都是等差数列,.数列满足.
(1)求的通项公式;
(2)证明:是等比数列;
(3)是否存在首项为1,公比为q的等比数列,使得对任意,都有成立?若存在,求出q的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图放置的边长为1的正方形 沿 轴滚动(向右为顺时针,向左为逆时针).设顶点 的轨迹方程是,则关于的最小正周期及在其两个相邻零点间的图像与x轴所围区域的面积S的正确结论是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R的奇函数,其中a是常数.
(1)求常数a的值;
(2)设关于x的函数有两个不等的零点,求实数b的取值范围;
(3)求函数在上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且在y轴上截得的弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)已知点,长为的线段PQ的两端点在轨迹C上滑动.当轴是的角平分线时,求直线PQ的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com