精英家教网 > 高中数学 > 题目详情
已知圆C:x2+(y-1)2=16(圆心为C点)及点A(0,-1),Q为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程是
 
考点:轨迹方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:根据线段中垂线的性质可得,|MA|=|MQ|,又|MQ|+|MC|=半径4,故有|MC|+|MA|=4>|AC|,根据椭圆的定义判断轨迹椭圆,求出a、b值,即得椭圆的标准方程.
解答: 解:由圆的方程可知,圆心C(0,1),半径等于4,
设点M的坐标为(x,y ),则
∵AQ的垂直平分线交CQ于M,
∴|MA|=|MQ|.
又|MQ|+|MC|=半径4,
∴|MC|+|MA|=4>|AC|.
依据椭圆的定义可得,
点M的轨迹是以 A、C 为焦点的椭圆,且2a=4,c=1,∴b=
3

故椭圆方程为
y2
4
+
x2
3
=1

故答案为:
y2
4
+
x2
3
=1
点评:本题考查椭圆的定义、椭圆的标准方程,得出|MC|+|MA|=4>|AC|,是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2014年5月31日,江西宜春的高三考生柳艳兵与易征勇在客运班车上与持刀歹徒英勇搏斗的事迹.事后不久,江西某市迅速在全市高中开展了“向柳艳兵与易征勇同学学习”的宣传活动,该市某高中就这一宣传活动在该校师生中抽取了120人进行问卷调查,调查结果如下:
 所持态度 很有必要 有必要 意义不大
 人数(单位:人) 60 40 20
(1)若从这120人中按照分层抽样的方法随机抽取6人进行座谈,再从这6人中随机抽取3人作进一步调查,求这3人中至少有1人态度为“很有必要”的概率;
(2)现从(1)所抽取的6人的问卷中每次抽取1份,且不重复抽取,直至确定出所有态度为“很有必要”的问卷为止,记所要抽取的次数为X,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中an+1-2an=0,若a3+2是a2,a4的等差中项,数列{bn}的前n项和为Sn,且满足bn=2nlog
1
2
an,则使Sn+n•2n+1=50成立的正整数n等于(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=4上的任意一点,点M、N依次为点P在x轴、y轴上的投影,若
OQ
=
3
2
OM
+
1
2
ON
,点Q的轨迹未曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点P作都有斜率的直线l1、l2,使得l1、l2与曲线C都只有一个公共点,试判断l1、l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的各顶点都在一个半径为1的球面上,球心O在AB上,SO⊥面ABC,AC=
2
,则该三棱锥的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=
9
1
n
-9-
1
n
2
,n∈N*,求(x-
1+x2
n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<α<
π
2
π
2
<β<π
,且cosα=
3
5
,tan(α-β)=-1,求cosβ+tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p、q∈R+且满足log9p=log12q=log16(p+q),求
q
p
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为奇函数且在(-∞,0)内是增函数,f(-2)=0,则xf(x)>0的解集是
 

查看答案和解析>>

同步练习册答案