精英家教网 > 高中数学 > 题目详情

【题目】设锐角三角形的内角A,B,C的对边分别为a、b、c,且sinA-cosC=cos(A-B).

(1)求B的大小;

(2)求cosA+sinC的取值范围.

【答案】(1); (2)().

【解析】

(1)利用诱导公式,两角和差的三角公式,化简所给的式子,求得sinB的值,可得B的值.

(2)化简要求的式子sin(A),根据A),利用正弦函数的定义域和值域,求得cosA+sinC的取值范围.

(1)设锐角三角形中,sinA-cosC=cos(A-B),即sinA+cos(A+B)=cos(A-B),

即sinA+cosAcosB-sinAsinB=cosAcosB+sinAsinB,

即sinA=2sinAsinB,,∴sinB=,锐角三角形中B=

(2)cosA+sinC=cosA+sin(π-A-B)=cosA+sin(-A)

=cosA+sin(+A)=cosA+cosA+sinA=sin(A+).

∵B=,∴A∈(),A+∈(),

∴sin(A+)∈(),∴sin(A+)∈(),

即cosA+sinC的取值范围为().

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,且 的最小值为t.
(1)求实数t的值;
(2)解关于x的不等式:|2x+1|+|2x﹣1|<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求该函数的值域;

(2)求不等式的解集;

(3)若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数, ),以原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程;

(2)当有两个公共点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=(  )
A.﹣
B.﹣
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

≥5

频数

60

50

30

30

20

10


(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;
(3)求续保人本年度的平均保费估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为1的扇形AOB中(O为原点),.点Pxy)是上任意一点,则xy+x+y的最大值为(  )

A. B. 1 C. D.

查看答案和解析>>

同步练习册答案