精英家教网 > 高中数学 > 题目详情

【题目】如图,已知平行四边形中,为边的中点,将 沿直线翻折成.为线段的中点,则在翻折过程中,有下列三个命题:

①线段的长是定值;

②存在某个位置,使

③存在某个位置,使平面.

其中正确的命题有______. (填写所有正确命题的编号)

【答案】①③

【解析】

中点,连接,利用中位线的性质去证明平面平面,即可证明平面;由平面平面可得,由余弦定理可得,进而求证即可;由题可证得,成立,平面,是等边三角形矛盾,即可判断

中点,连接,

,,所以平面平面,

因为平面,所以平面,故③正确;

由题,,,定值,定值,故由余弦定理可得, 所以是定值,故①正确;

由题,是等边三角形,,又平行四边形,所以,,所以,所以,,

,平面,所以,是等边三角形矛盾,故②错误;

故答案为:①③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中记载了这样的一个问题:三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还,其大意为:有一个人走了378里路,第一天健步行走,从第二天起其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第三天走的路程里数为(

A.192B.48C.24D.88

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆的上、下顶点,以为直径作圆,直线与椭圆交于两点,与圆交于两点.

1)若直线的倾斜角为,求为坐标原点)的面积;

2)若点分别在直线上,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是偶函数.

(1)的值;

(2)证明:对任意实数,函数的图象与直线最多只有一个交点;

(3)若函数的图象有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:在区间上单调递增;

2)若存在,使得的值域相同,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:()的左右焦点分别是,离心率,点在椭圆E上.

1)求椭圆E的方程;

2)如图,分别过作两条互相垂直的弦ACBD,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线(为参数),曲线(为参数),以O为极点,轴的非负半轴为极轴的极坐标系中,已知曲线的极坐标方程为,记曲线的交点为.

1)求点的极坐标;

2)设曲线相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,点是椭圆上的一个动点,且面积的最大值为.

1)求椭圆的方程;

2)过点作直线交椭圆两点,过点作直线的垂线交圆:于另一点.的面积为3,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数,使成立,则称的不动点.

1)当时,求的不动点;

2)若对于任何实数,函数恒有两相异的不动点,求实数的取值范围;

3)在(2)的条件下,若的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的最小值.

查看答案和解析>>

同步练习册答案