精英家教网 > 高中数学 > 题目详情
5.定义在(0,+∞)上的单调函数f(x),对任意x∈(0,+∞),f[f(x)-log2x]=3成立,若方程f(x)-f'(x)=2的解在区间(k,k+1)(k∈Z)内,则k=1.

分析 设t=f(x)-log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,由二分法分析可得h(x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案.

解答 解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-log2x]=3,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)-log2x为定值,
设t=f(x)-log2x,则f(x)=log2x+t,
又由f(t)=3,即log2t+t=3,
解可得,t=2;
则f(x)=log2x+2,f′(x)=$\frac{1}{ln2•x}$,
将f(x)=log2x+2,f′(x)=$\frac{1}{xln2}$代入f(x)-f′(x)=2,
可得log2x+2-$\frac{1}{xln2}$=2,
即log2x-$\frac{1}{xln2}$=0,
令h(x)=log2x-$\frac{1}{xln2}$,
分析易得h(1)=$\frac{1}{ln2}$<0,h(2)=1-$\frac{1}{2ln2}$>0,
则h(x)=log2x-$\frac{1}{xln2}$的零点在(1,2)之间,
则方程log2x-$\frac{1}{xln2}$=0,即f(x)-f′(x)=2的根在(1,2)上,
故答案为:1.

点评 本题考查二分法求函数的零点与函数零点与方程根的关系的应用,关键点和难点是求出f(x)的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.$\root{3}{(lg50-1)^{3}}$-$\sqrt{(lg2-1)^{2}}$=(  )
A.2lg5B.0C.-1D.-2lg5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数$f(x)=sin(\frac{1}{2}x+\frac{π}{6})$,则f(x)(  )
A.图象关于$x=\frac{π}{3}$对称
B.图象关于$(\frac{2π}{3},0)$对称
C.在$[\frac{2π}{3},\frac{8π}{3}]$上单调递减
D.单调递增区间是$[2kπ-\frac{4π}{3},2kπ+\frac{2π}{3}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,则$\frac{1-i}{i^3}$=(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,e为双曲线的离心率,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,过F2作直线PI的垂线,垂足为B,则OB=a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,已知角α的终边经过点P(-3,4)
(1)求sinα和cosα的值;
(2)求$tan(α+\frac{π}{4})$的值;
(3)求${sin^2}(α+\frac{π}{4})+sin(α+\frac{π}{4})•cos(α+\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的图象如图所示.
(1)根据图象写出f(x)的解析式;
(2)A为锐角三角形的一个内角,求f(A)的最大值,及当f(A)取最大值时A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面α的法向量$\overrightarrow{{n}_{1}}$=(x,1,-2),平面β的法向量$\overrightarrow{{n}_{2}}$=(-1,y,$\frac{1}{2}$),若α∥β,则x+y=$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.两条直线l1:ax+(1+a)y=3,l2:(a+1)x+(3-2a)y=2互相垂直,则a的值是 (  )
A.3B.-1C.-1或3D.0 或 3

查看答案和解析>>

同步练习册答案