精英家教网 > 高中数学 > 题目详情

【题目】已知关于的不等式,其中.

1)当时,求不等式的解集A

2)若,试求不等式的解集B

3)设原不等式的解集为C,记(其中为整数集),试探究集合M能否为有限集?若能,求出使得集合M中元素个数最少的实数的所有取值,并用列举法表示集合M;若不能,请说明理由.

【答案】(1);(2);(3),此时

【解析】

1)直接解一元二次不等式即得;

2)求出相应方程的两根,研究两根的大小可得;

3)对分类讨论,若,则中会有无穷个数,当时,不等式的解集是一区间,从而有有限个数.

1)不等式为,即,∴,即解集为

2,不等式可化为,又

,即解集为

(3)是不等式为一元一次不等式,不合题意,

时,由(2)知,集合有无穷我个整数,不合题意,

时,原不等式化为,∴

,而,∴

因此集合至少有共8个数,

只要地,即,均是这样.否则会多出-5这个数,

∴当时,中元素个数最少,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为OEFGH为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以ABBCCDDA为底边的等腰三角形.沿虚线剪开后,分别以ABBCCDDA为折痕折起△ABE,△BCF,△CDG,△ADH,使得EFGH重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.

问:(1)这个几何体是什么?

(2)这个几何体由几个面构成?每个面的三角形是什么三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )

(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;

(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速;

(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求出曲线的参数方程;

(Ⅱ)若分别是曲线上的动点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10四面体ABCD及其三视图如图所示平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH

1求四面体ABCD的体积

2证明四边形EFGH是矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:

AFGC

BDGC成异面直线且夹角为60

BDMN

BG与平面ABCD所成的角为45.

其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,证明:为偶函数

)若上单调递增,求实数的取值范围

)若,求实数的取值范围,使上恒成立.

查看答案和解析>>

同步练习册答案