【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.
组号 | 年龄 | 访谈人数 | 愿意使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
愿意使用的人数 | |||
不愿意使用的人数 | |||
合计 |
参考公式: ,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】解:(Ⅰ)因为 , , ,
所以第2、3、4组愿意选择此款“流量包”套餐的人中,
用分层抽样的方法抽取12人,各组分别为3人,5人,4人;
(Ⅱ)第5组的6人中,不愿意选择此款“流量包”套餐的4人,
分别记作:A、B、C、D,
愿意选择此款“流量包”套餐2人,分别记作x、y;
由题可知 ;
(Ⅲ)2×2列联表:
年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
愿意使用的人数 | 14 | 28 | 42 |
不愿意使用的人数 | 7 | 1 | 8 |
合计 | 21 | 29 | 50 |
计算 ,
∴在犯错误不超过1%的前提下可以认为,是否愿意选择此款“流量包”套餐与人的年龄有关.
【解析】(Ⅰ)根据频率分布表,利用分层抽样原理求出分别抽取的人数;(Ⅱ)利用列举法求出基本事件数,计算对应的概率值;(Ⅲ)根据题意填写列联表,计算观测值,对照临界值得出结论.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,曲线C1: (t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 cosθ. (Ⅰ)求C2与C3交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型① 与模型;② 作为产卵数y和温度x的回归方程来建立两个变量之间的关系.
温度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数y/个 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
|
|
|
|
26 | 692 | 80 | 3.57 |
|
|
|
|
1157.54 | 0.43 | 0.32 | 0.00012 |
其中 , ,zi=lnyi , ,
附:对于一组数据(μ1 , ν1),(μ2 , ν2),(μn , νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为: ,
(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1 , C2 , C3 , C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为 .,请根据相关指数判断哪个模型的拟合效果更好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , S4=﹣24,a1+a5=﹣10. (Ⅰ)求{an}的通项公式;
(Ⅱ)设集合A={n∈N*|Sn≤﹣24},求集合A中的所有元素.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.命题“x∈R,使得x2﹣1<0”的否定是:x∈R,均有x2﹣1<0
B.命题“若x=3,则x2﹣2x﹣3=0”的否命题是:若x≠3,则x2﹣2x﹣3≠0
C.“ ”是“ ”的必要而不充分条件
D.命题“cosx=cosy,则x=y”的逆否命题是真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格. (Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为 、 ,比较 、 的大小(直接写出结果,不写过程);
(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:
(1)PA⊥底面ABCD;
(2)平面BEF⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC1∥平面CDB1;
(2)求异面直线AC1与B1C所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com