精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线方程为y=±
3
x
,O为坐标原点,点M(
5
3
)
在双曲线上.
(1)求双曲线C的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
,求|OP|2+|OQ|2的最小值.
分析:(1)由渐近线方程可得关于a、b的一个方程,再把点M(
5
3
)
代入双曲线的方程又得到关于a、b的一个方程,将以上方程联立即可解得a、b的值;
(2)利用
OP
OQ
?
OP
OQ
=0
、一元二次方程的根与系数的关系、弦长公式即可求出.
解答:解:(1)双曲线C的渐近线方程为y=±
3
x

∴b2=3a2
∵点M(
5
3
)
在双曲线上,∴
5
a2
-
3
b2
=1

联立得
b2=3a2
5
a2
-
3
b2
=1
,解得
a2=4
b2=12

∴双曲线C的方程为
x2
4
-
y2
12
=1

(2)设直线PQ的方程为y=kx+m,点P(x1,y1),Q(x2,y2),
将直线PQ的方程代入双曲线C的方程,可化为(3-k2)x2-2kmx-m2-12=0
3-k2≠0
△=(-2km)2-4(3-k2)(-m2-12)>0
(*)
x1+x2=
2km
3-k2
x1x2=
-m2-12
3-k2

OP
OQ
=0⇒x1x2+y1y2=0

把y1=kx1+m,y2=kx2+m代入上式可得(1+k2)x1x2+km(x1+x2)+m2=0
(1+k2)
-m2-12
3-k2
+km
2km
3-k2
+m2=0

化简得m2=6k2+6.
|OP|2+|OQ|2=|PQ|2=(1+k2)[(x1+
x
 
2
)2-4x1x2]=24+
384k2
(k2-3)2

当k=0时,|PQ|2=24+
384k2
(k2-3)2
≥24
成立,且满足(*)
又∵当直线PQ垂直x轴时,|PQ|2>24,
∴|OP|2+|OQ|2的最小值是24.
点评:熟练掌握待定系数法求圆锥曲线的方程、
OP
OQ
?
OP
OQ
=0
、一元二次方程的根与系数的关系、弦长公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )

查看答案和解析>>

科目:高中数学 来源:宁波模拟 题型:单选题

已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是______.

查看答案和解析>>

同步练习册答案