精英家教网 > 高中数学 > 题目详情
2.若f(1+x)=x2,则f(x)=(x-1)2

分析 换元可得f(t)=(t-1)2,可得解析式.

解答 解:设1+x=t,则x=t-1,
换元可得f(t)=(t-1)2
∴f(x)=(x-1)2
故答案为:(x-1)2

点评 本题考查函数解析式的求解的换元法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求下列各式中x的值:
(1)log2(log4x)=0;
(2)log3(1gx)=1;
(3)log${\;}_{(\sqrt{2}-1)}$$\frac{1}{\sqrt{2}+1}$=x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条渐近线l的平行线交双曲线C于A,若以A为圆心,2a为半径的圆与l相切,则双曲线C的离心率e的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
品种甲403397390404388400412406
品种乙419403412418408423400413
(1)假设n=2,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设集合U=R,A={x|2≤x<4},B={x|3x-7≥8-2x}.求:A∩B,A∪B,∁U(A∪B),(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinθ+cosθ=$\frac{1}{5}$,θ∈[0,π],则sinθ=$\frac{4}{5}$,cos2θ=-$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.动直线x=m(m>0)与函数f(x)=2x+$\frac{1}{x}$,g(x)=x-$\frac{1}{x}$-lnx分别交于点A,B,则|AB|的最小值为(  )
A.3+ln2B.2C.$\frac{7}{2}$-ln2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线C:$\frac{{x}^{2}}{m+3}$-$\frac{{y}^{2}}{m}$=1(m>0)的渐近线方程为y=±$\frac{1}{2}$x,则双曲线C的焦距为(  )
A.1B.2$\sqrt{5}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若抛物线C的焦点是双曲线16x2-9y2=144的左焦点,则抛物线C的标准方程为y2=-20x.

查看答案和解析>>

同步练习册答案